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Abstract

Inversematerials design has proven successful in accelerating novel material discovery. Many inversematerials design methods use unsupervised learning where a latent space is learned to offer a compactdescription of materials representations. A latent space learned this way is likely to be entangled, interms of the target property and other properties of thematerials. This makes the inverse design processambiguous. Here, we present a semi-supervised learning approach based on a disentangled variationalautoencoder to learn a probabilistic relationship between features, latent variables and target proper-ties. This approach is data efficient because it combines all labelled and unlabelled data in a coherentmanner, and it uses expert-informed prior distributions to improve model robustness even with limitedlabelled data. It is in essence interpretable, as the learnable target property is disentangled out of theother properties of the materials, and an extra layer of interpretability can be provided by a post-hocanalysis of the classification head of the model. We demonstrate this new approach on an experimentalhigh-entropy alloy dataset with chemical compositions as input and single-phase formation as the singletarget property. While single property is used in this work, the disentangled model can be extended tocustomize for inverse design of materials with multiple target properties.

1 Introduction
Materials play a pivotal role in shaping the modern society and many grand technological challenges arematerials challenges. These range from lower-cost battery materials for energy storage, to quantum com-puting materials and bio-compatible materials for healthcare applications [1, 2, 3]. Thanks to advances inhigh-throughput computing [4], robotics [5], machine learning force fields [4] and open data respositoriesof materials [6, 7], materials design and discovery have now reached an unprecedented rate and scale [8].Although advances in algorithm and hardware significantly reduce the computation time for each itera-tion, it can still take extensive iterations or computation to pinpoint a small range of potential materialscandidates with desired properties [9].
Inverse materials design unlocks the potential to optimize new materials towards a target property. Ingeneral there are four approaches for inverse materials design [10]; high-throughput virtual screening [11],global optimization [12], reinforcement learning [13] and generative models [14, 15]. Among these, gen-erative models can be very data-efficient as they allow for encoding expert informed information into themodel, thereby reducing the amount of data that is required to learn a compact low-dimensional represen-tation. Moreover, the learned representation space can generate new data using the knowledge encodedduring training. Comparing various generative models, a study by Türk et al showed that variational au-toencoder (VAE) is more robust than reinforcement learning and generative adversarial networks becauseVAE has a better representation of underlying distributions and training a VAE model is easier [16]. How-ever, current generative models are primarily present as an unsupervised learning approach which learnsa latent space assumed to entangle the relationship between materials representations and target proper-ties [17, 10, 18]. It is not ideal as one will need to perform post-optimization to explorematerials with bettertarget properties and may even fail to find any useful materials. A recent work by Xie and Tomioka et alintroduced diffusion-based generative processes together with a fine tuning process to discover materialswith multiple target properties such as magnetic property and supply chain risk [19]. Although a state-of-the-art discovery rate and materials stability were reported, the full periodicity of the crystal structures
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restricts the design space for inorganicmaterials, the complexity of large datasets and diffusionmodels hin-der a wider application and the interpretability of the methods, and the practicality of the new materialsdiscovered in this process is doubtful without an expert insight [20].
Therefore, there is an urgent need to create a workflow for inverse materials design that is data efficient,interpretable and can be geared towards multi-property optimization. The objective of this work is todevelop high-entropy alloys (HEAs) which tend to form a single-phase structure. Conventional methods topredict single-phase alloys rely on sophisticated design of experiments, thermodynamicmodeling and first-principles calculations, which are not efficient search for high-entropy alloys because the number of pointsto search grow combinatorially with the increase of elements [21, 22]. For example, a HEAwith five possibleelements and each element has an integer composition between 5% and 35%, the number of possiblecompositions is on the order of 107, let alone the massive numbers of possible atomic arrangement foreach composition. Althoughmachine learning algorithms have proven to speed up the search of corrosion-resistance or mechanically strong HEAs [9, 23, 24], this forward design strategy still needs to scan a wideconfiguration and composition space. Inverse design is theorized to be a much more robust approach asit learns a probabilistic relationship between materials representation and a compact latent space wherenew materials candidates can be generated from this relationship. Coupled with an uncertainty estimate,search directions for new materials can be identified with a risk quantification [18]. Here we introduceda disentangled generative model using a semi-supervised variational autoencoder for the inverse designof complex materials. We demonstrated this approach on single-phase high-entropy alloys. Although ourdemonstration focuses on single materials property (single phase formation), the approach can also beapplied to materials discovery with multi-objective targets. This approach can utilize both labelled andunlabelled data sets. The proposed methods are highly versatile and robust, and can be readily extendedto other engineering domains where there exists a probabilistic input-output relationship.

2 Methods & Theories

2.1 Data set
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Figure 1: Experimental high-entropy alloy dataset for single phase formation.
This work uses an experimental data set where inputs are chemical compositions of alloys and outputs arebinary phase predictions indicating the formation of single phase (SP: 1) versus multiple phases (MP: 0).A summary of this dataset is shown in Figure 1. It is an up-to-date and well-recognized dataset for HEAsingle phase prediction collected by Yan et al [23]. Empirical rules suggest that the single phase formationrelies more on the synergistic effects of mixing different alloys rather than the independent attributes ofeach element [23, 25]. Therefore, eight engineered features are used rather than element-wise composi-tions. The eight features include bulk modulus (k), molar volume (Vm), melting temperature (Tm), valenceelectron concentration (VEC), atomic size difference (δ), Pauling electronegativity difference (δχ), mixingentropy (∆Smix) and mixing enthalpy (∆Hmix). Methods to calculate these features can be found in thesupporting information of our previous work [9]. Those eight features were found to be informative for theprediction of single phase formation [9, 23]. More importantly, this feature engineering provides a generaland compact representation of alloys comprising various elements, offering more generalizability for alloydesign. Given that an experimental data set is used, the trained ML models can thus give predictions thatare more likely to be manufactured in practice, without explicitly considering the manufacturing processand environmental conditions. For the purpose of inverse materials design, we also created another dataset where chemical compositions were transformed to element-wise compositions. For simplicity, we re-strict the element list to the top-30 frequent elements in the data set. Hence each alloy is converted to a30-element composition feature vector. This composition feature vector, combined with the binary phaseformation, is used as the input for the variational autoencoder.
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2.2 Proposed Model: Disentangled VAE

2.3 Generative model
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Figure 2: Generative (Left) and recognition model (Right) in the disentangled variational autoencoder forinverse design of single-phase high-entropy alloys.
Assume x ∈ R+ represents an alloy and that each alloy has a phase ϕ ∈ {0, 1} that is our target property.The phase is assumed known for at least a subset of the training data. In addition assume z ∈ Rl as an
l- dimensional latent variable, represents any other factors that may be responsible for generating alloys.With this notation in place, we write the generative model (Figure 2, left) for the data in the form of thefollowing joint probability distribution:

pθ(x, ϕ, z) = pθ(x|ϕ, z)p(ϕ)p(z) (1)
Where θ parameterizes the likelihood using a neural network that takes as input the sampled instances ofϕand z. Different choices of priors can be experimented with for each variable, we propose one possible setof choices that best suit the data-space that each variable belongs to. The likelihood of the compositionaldata is modeled as a multinomial parameterized by the neural network θ :

x ∼Multinomial(θ(ϕ, z)) (2)
Priors for the binary Phase ϕ are modeled using Bernoulli distribution and lastly, we assume a standardnormal prior over the latent variable z as a relatively uninformative prior.

ϕ ∼ Bernoulli(r), z ∼ Normal(0, I) (3)
Note that informed choices for the hyperparameters of these prior distributions can be made, e.g. thephase prior can be chosen to bias the model towards observing more multiphase alloys vs single phasealloys.
2.3.1 Recognition model

With the above generative model in place, we can now define the recognition model to perform inference.There are different acceptable recognitionmodels given the above generativemodel. We propose one thatconforms best to the our goals of enabling prediction, interpretation, and exploration. The recognitionmodel qψ(ϕ, z|x) takes as input the data and maps it to the latent representation space, serving as thevariational approximation to the otherwise intractable posterior distribution p(ϕ, z|x). We assume therecognition model factorizes as follows under a mean-field assumption:
q(ϕ, z|x) = qψϕ(ϕ|f(x))qψz (z|x, ϕ) (4)

The idea behind this factorization is that, we know from prior knowledge that the phase ϕ is well predictedby a physics informed hand-engineered transformation f(x) [9]. Specifically this transformation takes incomposition and outputs eight relevant physical descriptors [23]; atomic size difference, mixing enthalpy,
3



mixing entropy, Pauli electronegativity difference, molar volume, bulk modulus, melting temperature andvalence electron concentration. In turn the neural network ψϕ uses these engineered features to predictthe binary phase. Note that f(x) is a pre-specified transformation and not a learnable function. Finally thelatent variable z encodes everything else about the alloy x conditioned upon values of phase. This recog-nition model allows us to encode hand-engineered features that we know are useful for predicting phase,and rely on the expressivity of neural networks to encode other information necessary for the eventualreconstruction of the training data through the decoder.
2.3.2 Model training

We can train both the generative model and the recognition model simultaneously by maximizing the fol-lowing variational objective function w.r.t the neural network parameters for the generative and recogni-tion model:
N∑
n=1

L(θ, ψz, xn) + γ

M∑
m=1

Lsup(θ, ψϕ, ψz;x
m, ϕm) (5)

The first part of this objective function optimizes over all n = 1, . . . , N data points for which supervision isnot available. This is the standard VAE evidence lower bound (ELBO) loss, which can generally be thoughtof as learning to reconstruct input data with some regularization on the latent space. The second term isthe supervised loss and usesM points where supervision is available i.e. points for which values for phaseformation are available. Where the constant γ is a hyperparameter that balances prediction accuracy forsupervised learning and reconstruction accuracy for unsupervised learning. The objective above can thenbe approximated using a Monte Carlo estimator as explained in the survey by Luengo et al [26]. We utilizePyro [27], a pytorch based probabilistic programming language, for model specification as well as trainingand inference.
The entire data set with 1373 data points was split into 90:10 training/testing. The training set was fur-thered split into 70:30 labelled/unlabelled, the unlabelled training data is further split into 80:20 train-ing/validation, this results in 864 labelled training examples, 296 unlabelled training examples, 75 valida-tion examples, and 138 test examples. Two hidden layers of size 100 each were used for both recognitionand generative models. ‘Adam’ optimizer was used for optimization. An initial training rate of 10−4 wasemployed with a 0.9 decay rate for momentum and 0.999 decay rate for squared gradients. The learningrate was reduced by a factor of 0.5 if no improvement in training has been observed for 200 consecutivesteps. A batch size of 32 was used for training the model with up to 20000 epochs. The model with thehighest validation accuracy was saved as the best model for hereafter inference and analysis. To examinethe randomness of data splitting, five different random seeds were used to split the train, validation, un-labelled and test datasets. The mean and standard deviation of prediction accuracy and area under thecurve for receiving operating characteristics are reported in Section 3.1.1.
2.4 Post-hoc analysis: SHAP feature importance
To analyze the overall impact of each feature on the classifier for the single-phase formation, we utilize theexisting post-hoc analysis method implemented in SHAP [28], a game theoretic approach to explain anymodel output. Specifically, we used the model-agnostic kernel explainer that relies on specially-weightedlocal linear regression. The training set was used as the background dataset to integrate out features, andthe overall feature importance was evaluated and reported on the test data.

3 Results and Discussion

3.1 Semi-supervised machine learning
3.1.1 Classification for single phase formation

Using five random seeds for data splitting, the mean and standard deviation of prediction accuracies fortraining, validation and test are 0.883±0.027, 0.930±0.026 and 0.829±0.050, respectively. The meanand standard deviation of area under curves (AUC) are 0.954±0.014, 0.955±0.029 and 0.890±0.025 forrespective training, validation and test data. Using themodel with the highest test accuracy, Figure 3 showsthe receiving operation characteristic (ROC) curves for training, validation and test datasets. The area undercurves (AUC) are all no less than 0.91, suggesting a reliable prediction of single-phase formation.
4
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Figure 3: ROC curves for training, validation and test.
3.1.2 Alloy reconstruction

Next, we chose a few HEA examples in the test dataset, and we compared the predicted class to the groundtruth labels as well as the reconstructed alloys versus the original ones. We first compute the predictedprobability of being single phase using the classifier. We then reconstruct the alloy given the compositionfeatures and the predicted probability using the generative model. The results are summarized in Table1.
• In the first example ‘Fe19Ni19Cr19Co13Al19Mo9’, it shows that the predicted class is highly likely to besingle phase, consistent with the ground truth. Plus, the reconstructed alloy comprises of the sameelements as the original alloy with slightly different composition (marginally higher Co and Ni com-positions and lower Cr and Al compositions).
• The second example ‘Al11Ti22V22Nb22Zr22’ is primarily made up of refractory elements with a smallamount of Al and it forms a multiple-phase structure in experiments. It is also predicted to form amultiple-phase structure. The reconstruction is largely similar except with trace amounts of Cr andTa which are not present in the original. While this isn’t perfect reconstruction, note that Cr and Taare in nature also refractory elements, similar to Ti, V, Nb and Zr.
• The third example ‘Al4Ti23Mo23V23Ta23’ is similar to the second one but with less Al. It tends to form asingle-phase structure. The predicted class agrees well with the ground truth, and the reconstructedalloy contains three more elements (Cr, Nb and Zr) than the input alloy, which can be explained bythe same rationale for the second example.
• In the last example, the predicted probability 0.52 of ‘Fe20Ni20Co20Ti20Cu20’ slightly favors the for-mation of single phase, which turns out to be the ground truth. The reconstructed alloy also hasmore elements (Al, Cr, V, Mn) and no Ti. The replacement of Ti with Cr and V follows the same logicas the second and third examples. The addition of a small amount of Al may be attributed to thefrequent appearance of Al in the training data while Mn, located in the middle of first-row transitionmetals, reconciles differences between different types of transition metals between (Fe, Co, Ni), (V,Cr) and Cu. To further examine the reconstructed alloy, its predicted probability is 0.51, indicating aself-consistent reconstruction process.

The above examples show that while the reconstructions are (expectedly) not exact, the “errors” in re-construction happen along materially explainable directions - indicating that the latent space is encodinguseful information about the alloy generation process.
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Table 1: Evaluation of semi-supervised autoencoder for alloy reconstruction. Since formulas for originalalloys are varied, we converted all formulas to a standard format where compositions are rounded to in-tegers with a sum close to 100, and element orders are sorted. Total compositions may not be exactly 100because of the rounding issue.
Original alloy Reconstructed alloy Predicted probability Ground truth labelFe19Ni19Cr19Co13Al19Mo9 Fe19Ni21Cr15Co21Al15Mo9 0.15 0 (Multiple phase)Al11Ti22V22Nb22Zr22 Cr3Al7Ti18V20Nb32Zr16Ta4 0.10 0Al4Ti23Mo23V23Ta23 Cr1Al2Ti29Mo26V11Nb16Zr8Ta7 0.95 1 (Single phase)Fe20Ni20Co20Ti20Cu20 Fe17Ni23Cr13Co21Al2Cu5V10Mn10 0.52 1

3.1.3 Data efficiency

In comparison with supervised machine learning only. this proposed semi-supervised framework is moredata efficient, and the reason is twofold. First, it learns a probabilistic feature–target relationship whichuses prior distributions for features, target and latent variables. This expert-informed knowledge con-straints model fitting and is supposed to be superior in generalizing the data points and to show less vari-ance when predicting on unknown data. Second, it leverages all relevant information from both labelledand unlabelled data. Although a classifier solely determines the target property once it is trained, theunsupervised learning is integrated into the supervised learning because the losses are added up and op-timized together. The priors also regularize the classifier head, and it enforces a more accurate descriptionof feature–target relationship that influences the reconstruction process.
To verify the data efficiency of the proposed framework, we held out the same 138 data points for testing.The prediction accuracy were compared between semi-supervised learning and conventional supervisedlearning on the training and test data.Neural network models were used for the supervised learning usinghyper-parameters close to ones chosen for the classifer of the semi-supervised learning. We split the re-maining data into labelled, unlabelled and validation datasets, and we varied the number of data pointsfor each dataset. We summarized the prediction accuracy on the training and test data in Table 2. Whenthere ismore labelled data (first row), the semi-supervised learning performs similar to supervised learningin terms of test accuracy. Significantly, when the size of labelled data is much smaller (second row), theproposed semi-supervised model outperforms a fully supervised model in terms of test accuracy. It showsthat the proposed semi-supervisedmethod can perform as well as a fully supervisedmethodwhen there isa lot of labelled training data available and outperforms fully supervised classification when fewer labelleddata points are available. Note that the proposed model also learns a latent space that can be exploredand used for generating compositions (aspects that are missing from a fully supervised model).
Table 2: Data efficiency of the semi-supervised learning compared versus supervised learning only. ‘SS’ and‘SL’ refers to respective semi-supervised learning and supervised learning.

Labelled data Unlabelled data Validation data Test accuracy (SS vs SL)864 296 75 0.877 vs 0.870247 790 198 0.841 vs 0.826

3.2 Latent space representation
3.2.1 Disentanglement from target property

Latent space for all data points and their ground truth labels are shown in Figure 4(a), and a kernel densityestimate for the data distribution is depicted in Figure 4(b). One can see that single phase alloys are mixedup with multiple phase alloys in the latent space, implying that the single phase formation aspect hasbeen disentangled from this latent representation. Although the input alloys consist of up to 30 differentelements and live in a high-dimensional space, more than 84% data points are condensed into a smalllatent region (z1 ∈ [−2.5, 2.5] and z2 ∈ [−2, 2]), as indicated by the kernel density plot in Figure 4(b).We also listed two pairs of high-entropy alloys in latent-space regions where data densities are the highest.Each pair of points is of similar latent variables but has different true labels again showing that the spacecaptures properties other than the phase formation.
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AlCo0.5CrFeMo0.5, 0

MoNbTaTi0.25W, 1
MoNbTiZr, 0

Figure 4: Disentangled latent representation (a) and Data point distribution (b). True labels for the HEAsare given as a binary presentation where ‘1’ and ‘0’ stand for single phase and multiple phase structuresrespectively.
3.2.2 Association with other properties

The proposed semi-supervised learning methodology allows us to disentangle the target property fromthe latent space, allowing the latent space to be implicitly associated with other properties. Figure 5 showsthe association of learned latent space with two other properties. Figure 5(a) represents the number ofelements for each alloy in the full dataset. It is found that HEAs with no less than four elements are con-centrated in a smaller region of the latent space compared to simpler alloys with less than four elements.In Figure 5(b), we created three groups of elements based on their positions in the chemical periodic table,includingmagnetic, noble and refractory elements. Onemay argue that the exact group some elements be-long tomay vary by definition, but the purpose here is to group elements that at least share some similarityin atomic features. We then chose four elements from one group and created an equimolar four-elementHEA. and generated its latent variables. One can find that HEAs for each group of elements are located indistinct regions in the high data density region of the latent space (shown in Figure 4. Hence, the modellearned a general representation for elements across the chemical periodic table, which further explainswhy reconstructed alloys sometimes contain additional elements from the same group of elements andwhy high-dimensional composition features can be mapped into the more compact latent space.

(b)(a)

Figure 5: Number of elements distribution for all data points represented in the latent space (a), and Latentvariables for four-element HEAs generated from three groups of elements (b). Element lists for each groupare indicated by texts close to the corresponding point cloud.
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3.3 Inverse materials design
The proposed semi-supervised variational autoencoder is versatile for inverse materials design. With theclassifier head in the recognition model, one can carry out high-throughput virtual screening of materialsto identity potential candidates with desirable target properties. However, there is a chance that no de-sired materials can be found even if a wide range of composition space is scanned, making this methodinefficient.
Another method is to start from the latent space and a given probability for single-phase formation. Thegenerative model will create an alloy based on latent variables and single-phase formation probability.The generated alloy should however be re-examined by the classifier to ensure the predicted probabilityagreeswith the initial input probability. For example, if we aim to find single-phase refractory HEAs, we firstlocate a latent point, such as (z1, z2) = (0.0,−0.8), among the refractory alloy blob as shown in Figure 5.For a formation probability of 0.9, the generated alloy is ‘Ti9V10Nb19Zr58Ta1Hf2’, and the classifier predictsit to be single phase with a probability close to 1. If we set the probability as 0.1, the alloy generatedbecomes ‘Cr3Al12Ti19V21Nb28Zr13Ta5’, and the predicted probability is 0.04. Although the learned latentrepresentation generalizes many different elements, caution should be taken if we would like to generatealloys in regionswhere labelled data are scarce, which can result in high uncertainty for the predicted targetproperty. As an example, if we start from (z1, z2) = (0.8,−0.5) which belongs to the magnetic alloy blobwhere data densities are low according to Figure 4(b). The generated alloy with an input probability of 0.1is ‘Fe2Co81Ta14Pt2’, yet the predicted probability turns out to be 0.71.

Alloy

SP prob., y

Latent space

Engineered feature

Composition feature

y>0.6?

Yes

No

Generate a new alloy with an inverted probability

Exit loop

1-y 

Figure 6: Workflow of the iterative process to search for single-phase alloys using the disentangled varia-tional autoencoder. ‘SP’ stands for single phase.
This inconsistency between input probability and predicted probability for alloys generated from low-density regions, motivates the third method. In practice, one may have a specific alloy in mind, but thealloy does not give the desired property. The goal is to nudge the alloy composition in directions wherethe desired property can be achieved without significant changes of alloy constituents. An iterative pro-cess is proposed to find a single-phase alloy from an initial multi-phase alloy, as illustrated in Figure 6. Theinitial alloy is converted to engineered features which are used to predict the single-phase probability. Thecomposition features converted from the alloy are combined the single-phase probability to generate itslatent representation. We invert the single-phase probability, and the probability is concatenated with thelatent representation to generate a new alloy. The loop ends when the single-phase probability predictedby the classifier is larger than a predefined cutoff (e.g. 0.6). We demonstrate this workflow using an ini-tial alloy ‘Al1.4Co0.9Cr1.4Cu0.5Fe0.9Ni1’ or equivalently ‘Fe14Ni16Cr22Co14Al22Cu8’. The evolution towards asingle-phase alloy follows the sequence:

Fe14Ni16Cr22Co14Al22Cu8
y=0.12,z⃗=[−1.584−0.201]

→ Fe17Ni22Cr23Co25Al12
y=0.48,z⃗=[−1.138−0.163]

→ Fe19Ni22Cr19Co25Al15
y=0.08,z⃗=[−0.985−0.103]

→ Fe21Ni22Cr22Co35
y=0.70,z⃗=[−0.846−0.187]

where the corresponding predicted single-phase probability y and latent variables z⃗ are shown right belowthe chemical formula of the alloy. One can see that after three iterations, the alloy eventually transformsto an alloy with a single-phase probability 0.70. In the first step, the alloy moves into a region without Cu,which enhances its single-phase probability. The second step detours around the target, transitioning to analloy with reduced probability before it was finally inverted to a single-phase structure. The alloy evolution
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occurs in latent regions close to the initial point, hence it preserves many original elements or introducesnew elements that are learned to be similar to existing ones. This probabilistic process offers more controlover the inverse design process and provides intuitive interpretability of inversion of materials for desiredproperties. One can see that with principal elements of Fe, Ni, Cr and Co, it is unfavorable to form single-phase structures when Al and Cu are added. Moreover, the compositions of Al and Cu are almost evenlyreplaced by Fe, Ni and Co compositions while Cr compositions remain almost unchanged in the alloy evo-lution process. It suggests that Cr also reduces the probability of single-phase formation when mixed withthe three magnetic elements. This observation agrees very well with our previous work, indicating that Aland Cr are adverse to the single-phase formation for high-entropy alloy AlCrNiCoFe [9].
3.3.1 Post-hoc analysis for improved interpretability

The semi-supervised learning approach is intended to be interpretable by design to the extent that it disen-tangles the latent space into the properties of interest. We can add additional one layer of interpretabilityby through post-hoc analysis methods. In the recognitionmodel, the classifier head takes as input the engi-neered features and predicts the single-phase formation. That is still a black-box process. We utilize existingpost-hoc explainability approaches, specifically Shapley values (SHAP) — a widely used approach from co-operative game theory [28] — to provide insight which input features can be attributed to the predictionsmade by the classification head for each input alloy. Figure 7(a) shows the aggregated feature importancevalues across all samples in the test dataset. One can see that lower mixing entropy and atomic size differ-ences, and highermelting temperature and bulkmodulus aremore likely to form a single-phase alloy.Figure7(b) compares the eight engineered features for an original multi-phase alloy ‘Fe14Ni16Cr22Co14Al22Cu8’ andthe inverted single-phase alloy ‘Fe21Ni22Cr22Co35’. It is clear that the inverted alloy is pushed toward thedirection where it is of a much smaller atomic size difference, lower mixing entropy and higher meltingtemperature and bulk modulus, in satisfactory agreement with the feature importance analysis.
(b)(a)

Figure 7: Post-hoc analyses for single-phase formation. (a) SHAP values for all data points and (b) Featurevalues for an original multi-phase alloy and its inverted single-phase alloy.

4 Conclusion and Outlook
We utilized probabilistic modeling recently developed in computer science community to inverse materi-als design. We introduced a disentangled autoencoder trained in a semi-supervised manner. This modelcan achieve better prediction accuracy when only a small amount of labelled data are available because itencodes expert-informed priors and leverages all useful information in themodel. This disentangled frame-work is by design more interpretable since it offers a separate understanding for materials representationsand the target property. Additional levels of explainability can be achieved via post-hoc analyses.
This approachwas demonstrated on an experimental high-entropy alloy dataset. We focused on the inversedesign of high-entropy alloys that are likely to form single-phase structures. The learned latent represen-tations were found to be compact and disentangled from the target property, opening up endless designspace with a separate and tunable target representation. With similar latent variables, it allows transfor-mations across alloys with similar alloy constituents but distinct materials properties. The latent space isimplicitly entangled with other properties, including the number of elements and alloy types. Using a well-trained disentangled variational autoencoder, inverse materials design can be conceived in three differentways, including high-throughput virtual screening using the classification/regression head, design from a
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latent-space region and an iterative design process as benchmarked in this work.
Although a single target property is used in this work, this disentangled probabilistic modeling approachcan be easily adapted for multiple properties as long as reasonable prior distributions for each propertycan be identified. The approach implemented in this work may lead to alloys with harmful or expensiveelements. Hence, new methods to constrain material representations while searching for new materialsare crucial to develop cost-effective materials with desired properties. Uncertainty and inconsistency inthe inverse materials design necessitates an active learning approach where reliable materials validationshould be incorporated, and uncertainty estimate and retraining algorithms should be developed. In thisline of research, a human-in-the-loop intelligent interface may be beneficial to guide the search of newmaterials and identification of new data to improve the model, in particular for non-expert users. Wewould also expect to see extensions of this approach to other types of materials representations (e.g.atomic structures, microstructures and crystal graphs etc) and models for inverse design (e.g. diffusionmodels and generative adversarial networks).
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