Contents lists available at ScienceDirect

Powder Technology

journal homepage: www.elsevier.com/locate/powtec

Coupling effect of chromia doping and vacuum on the phase transition of alumina prepared by co-precipitation process

Cheng Zeng ^a, Yunhan Ling ^{a,*}, Yakui Bai ^a, Weifeng Liu ^a, Yixiang Chen ^b

^a Lab of Advanced Materials, School of Materials Sciences and Engineering, Tsinghua University, Beijing 100084, China
 ^b Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China

ARTICLE INFO

Article history: Received 25 August 2015 Received in revised form 22 January 2016 Accepted 26 February 2016 Available online 3 March 2016

Keywords: Alumina Chromia Phase transition Vacuum calcination

ABSTRACT

Synthesis of thermodynamically stable corundum structure alumina under lower temperature is of great significance in practical applications, exploration on new technique and the involved mechanism therefore becomes increasingly essential. In this work, the coupling effect and mechanism of chromia doping and vacuum condition on the phase transition of Al_2O_3 prepared via co-precipitation process were investigated and explored. It was found that chromia doping by itself did not promote the nucleation of α - Al_2O_3 , or in some sense inhibited the transformation process. Cr doped γ - Al_2O_3 powders treated in a vacuum condition (10^{-5} Pa) however showed a gradual transition to α - Al_2O_3 even at low temperature of 600 °C, demonstrating that surface nucleation (200-400 °C) of the phase transformation temperature. Based on the comprehensive characterizations and conventional diffusional nucleation mechanism, it is concluded that the surface nucleation sites for phase change to α - Al_2O_3 increased significantly during vacuum calcination with the combination of template effects of Cr₂O₃. This finding may provide a new way in fabrication and understanding of stable alumina formation under relatively moderate temperature condition.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Due to many beneficial properties and several existing crystalline phases, alumina finds applications in a wide variety of areas, including heterogeneous catalysis, abrasives, ceramic materials and protective coatings [1,2]. For example, α phase is widely used as wear-resistant coatings due to its hardness and thermal stability, while γ phase is often used as catalysts or catalyst supports because of its low surface energy and high specific surface areas available for catalytic reactions [3,4]. Alumina exists in many different polymorphs-several transition phases (γ , κ , δ , θ , etc.) as well as the only thermodynamically stable phase α -Al₂O₃. Even though α -Al₂O₃ is thermodynamically stable at all temperatures up to its melting point, the transition phases are often formed at temperatures below 1000 °C. The reason seems to be that the transition phases are surface energy stabilized at lower temperatures [5]. Transformations between metastable phases are topotactic and therefore of relatively low energy [6]. The phase of θ -Al₂O₃, the most crystallographically ordered transition alumina, is often the final step before the transition to α -Al₂O₃ [7]. The transformation from θ -Al₂O₃ to α -Al₂O₃ involves a change in the oxygen sub-lattice from cubic to hexagonal close packing and generally ends in the transformation to the stable phase α -Al₂O₃above ~1100 °C. Generally, the transformation to α -Al₂O₃ obeys a classical nucleation and growth mechanism. A study by Messing et al. claims the evidence for a diffusional nucleation mechanism for the transformation of θ -Al₂O₃ to α -Al₂O₃ [7]. A critical crystal size, the most commonly reported evidence for a shear nucleation mechanism, is also necessary for the diffusional nucleation mechanism because the transition alumina must coarsen to produce potent heterogeneous alpha nucleation sites [8]. In addition, diffusional nucleation is more favorable at surfaces or other low energy sites and the energy barrier for diffusional nucleation arises from the creation of a new surface between the nucleating (α) and matrix (θ or γ) phases. The metastable phases are involved in the following common transition sequence as:

Bayerite or boehmite $\rightarrow \gamma$ -Al₂O₃ $\rightarrow \delta$ -Al₂O₃ $\rightarrow \theta$ -Al₂O₃ $\rightarrow \alpha$ -Al₂O₃.

The grains can grow fast at higher temperatures with these transformations and as a result there is a decrease of specific surface area and consequently loss of sinterability [9]. Moreover, an elevated temperature of higher than 1000 °C prohibits the use of α -Al₂O₃ coatings on temperature sensitive substrates such as many metals and their alloys [10]. Thus, there is a pressing demand for decreasing the growth temperature of α phase. Considerable studies have already been carried out on the phase transformation of alumina. It is well known that the phase transition of γ -Al₂O₃ to α -Al₂O₃ can be influenced by cation additive. For example, the gamma to alpha phase transition temperature

^{*} Corresponding author. *E-mail address:* yhling@mail.tsinghua.edu.cn (Y. Ling).

was inhibited by the addition of monovalent cations – i.e., Li⁺, Na⁺ and K⁺ [11], whereas the addition of transition metals such as Mn²⁺ and Cu²⁺ has been reported to accelerate the transformation, hence reducing the temperature [12]. Some other approaches have been proposed to prepare α -Al₂O₃ at lower temperatures and the corresponding mechanism has been investigated; by adding α -Fe₂O₃ or α -Al₂O₃ seed the energy for nucleation could be either reduced or overcome [13]. In this present work, Cr doped alumina powders were synthesized by a conventional co-precipitation process. Phase evolution of the precursors and the new coupling effect of chromia doping and vacuum calcination on the phase transformation of alumina and the involved mechanism were investigated.

2. Experimental procedure

2.1. Materials processing

In the present study, the starting materials for hydrated alumina are $Al(NO_3)_3 \cdot 9H_2O$ with a purity of 99% (by weight, wt.) and $Cr(NO_3)_3 \cdot 9H_2O$ with a purity of 99% (wt.). Aqueous ammonia solution (25 vol.%) of 99% (wt.) in purity was chosen as the precipitant. All these reagents were purchased from Sinopharm Chemical Reagent Co. Ltd., and used without further purification.

The flow chart of the preparation procedure is depicted in Fig. 1. $Al(NO_3)_3 \cdot 9H_2O$ and $Cr(NO_3)_3 \cdot 9H_2O$ were dissolved into deionized

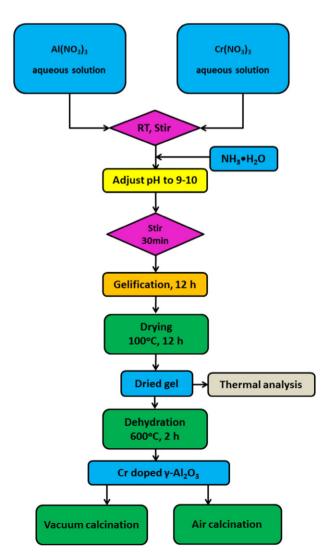
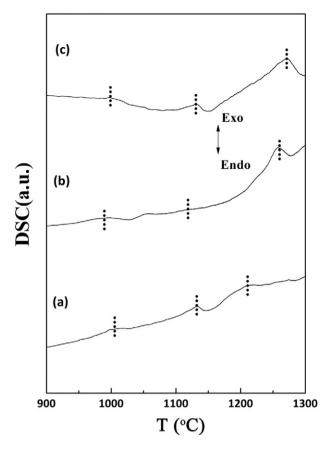


Fig. 1. Flow chart of the preparation procedure.

water. Precursors were prepared by dropping ammonia solution into the solution at a low speed under magnetic stirring at room temperature. When the slurry pH was adjusted to 9.0–10.0 by a pH test strip, it was stirred for another 30 min after finishing dropping. The resulting suspensions were aged for 12 h at room temperature, after which the slurry was rinsed with distilled water and ethyl alcohol two times respectively and then dried at 100 °C for 12 h. After an intermediate grinding, the dried gels were heat treated at 600 °C for 2 h in air to remove the hydroxyl species. The dehydrated samples show a pure phase of γ -Al₂O₃. Several samples of alumina containing 0, 1 wt.% and 3 wt.% chromium, corresponding to 0, 1.46, 4.38 mol% Cr₂O₃, were prepared in this manner, and the three samples with different doping concentrations will be denoted henceforth as 0%Cr, 1%Cr and 3%Cr. Fractional as-prepared powders were sealed in a high-vacuum quartz tube with a pressure of 5×10^{-5} Pa; the sealed and unsealed alumina powders were calcined at different temperatures for 4 h.

2.2. Powder characterization

Chemical compositions of these as-prepared γ -Al₂O₃ powders were verified by an X-ray Florescence spectrometer (XRF, XRF-1800, SHIMADZU, Japan). Differential scanning calorimetry (DSC) of the original precursors was employed to investigate the chromia doping effect.


Phase identification of the powders treated at different temperatures was performed on an X-ray diffractometer (D8 Advance, BRUKER, Germany) with Cu K α radiation at a scanning speed of 6°-per minute. Photoluminescence (PL) measurements were carried out with a Raman spectrometer (Lab HR Evolution, HORIBA, France) using argon ion laser excitation at 532.2 nm and 632.8 nm at room temperature to detect the trace amount of α -Al₂O₃ and to analyze the Cr³⁺ luminescent states in both α -Al₂O₃ and γ -Al₂O₃, respectively [14,15]. Differential scanning calorimetry (DSC) was made on a DSC analyzer (STA449F3, NETZSCH, Germany) in flowing air with a heating rate of 10 °C/min and thermal gravimetric analysis (TG) used a TG analyzer (QMS403C, NETZSCH, Germany).

Several techniques were employed to explore mechanism of the coupling effect. Fourier transform infrared spectroscopy (FTIR) was measured on an infrared spectroscope (VERTEX 70V, BRUKER, Germany) with KBr pellet technique to study the different types of Al–O stretching and bending modes. Furthermore, the powders were ultrasonically treated for 20 min in alcohol. The pellucid solution was dripped onto an ultra-thin carbon coated copper grid for transmission electron microscopy (TEM, Tecnai G2 F30, FEI, US) characterization.

3. Results and discussion

3.1. Chromia doping effect

Fig. S1 shows the representative DSC and TG curves for the dried precursor of 0%Cr sample; the several peaks before 500 °C of the DSC profile are accompanied by a large weight loss on the TG curve. It is associated with loss of water. The TG curve indicates the complete decomposition of the precursors occurred near 700 °C. The wave near 500 °C of the DSC profile is due to the initial formation of γ -Al₂O₃; the three exothermic features 1, 2 and 3, observed at higher temperatures, correspond to the formation of other transition alumina. The broad peak centered at ~1000 °C may be related to the transition of γ -Al₂O₃ to δ -Al₂O₃, the well-defined peak at ~1100 °C corresponds to the transformation of δ -Al₂O₃ to θ -Al₂O₃ and the third thermal event at 1217 °C is the characteristic of the θ to α alumina transition [16]. For precursors of 0%Cr, 1%Cr and 3%Cr, similar curves were obtained over the range of 50–900 °C, and DSC curves are presented in Fig. 2 for different samples in the range of 900 °C-1300 °C. One can note that the last transformation was shifted to higher temperature for samples of 1%Cr (1260 °C) and 3%Cr (1272 °C). From the thermal analysis results, it suggests that

Fig. 2. Enlargement of the thermograms between 900 °C and 1300 °C for Cr doped alumina samples. (a) 0%Cr, (b) 1%Cr and (c) 3%Cr.

chromia doping may inhibit the final transformation to α -Al₂O₃. In addition, the XRD spectra of the 0%Cr, 1%Cr and 3%Cr heated at 1000 °C show that all the samples displayed the θ -Al₂O₃ structure. More specifically, lower-speed scanning of the strongest peak centered at ~67.4° was conducted to estimate the crystallite sizes for different chromia doping concentrations, and the results are depicted in Fig. S2. The estimated grain sizes determined from the refined XRD results are estimated by the Scherrer formula to be ~9 nm. It seems that although chromia doping by itself inhibits the phase transformation process of θ to α alumina, it does not affect the coarsening of theta alumina. Besides, compared with the peak position of samples 0%Cr and 1%Cr, there is a shift towards smaller angle (larger d-spacing) for sample 3%Cr calcined at 1000 °C, indicating a lattice expansion in the alumina lattice after chromia doping.

As for the chromia doping effect on the phase transformation to α -Al₂O₃, it is previously reported that dopant Cr³⁺ incorporated into the crystal structure could inhibit the transformation to α -Al₂O₃. The chromia doping effect was due to the resisting of the cooperative motion of the oxygen ions [7,17,18]. However, it has been extensively investigated that with external chromia acting as a template, the final transition to α -Al₂O₃ can occur at much lower temperatures, especially for α -Al₂O₃ films prepared through vapor deposition or magnetron sputtering deposition techniques [19-21]. It is generally accepted that both α -Al₂O₃ and chromia have the corundum-type structure (space group R3c). Chromia of the trigonal phase (Eskolaite: $a_0 = 0.5048$ nm, $c_0 = 1.3735$ nm [15]), which can be obtained at temperature about 600 °C, has lattice mismatches to α -Al₂O₃ (a₀ = $0.4742 \text{ nm}, c_0 = 1.2936 \text{ nm} [22]$) of 6% and 5.8% for the a and c axes, respectively. Taking into account the almost equivalent cell parameters of chromia and α -Al₂O₃, it is reasonable to presume that the transformation to α -Al₂O₃ can be induced and promoted by the more easily formed chromia.

In short, chromia in the solid solution of (Al, Cr)₂O₃ acts as Cr³⁺ in a crystallographic environment under the distorted symmetry of ionic oxygen in transition Al₂O₃, rather than an independent corundum-type template. Given the larger ionic radius of Cr³⁺ (0.062 nm) over Al³⁺ (0.054 nm), the chromia doping causes a lattice expansion in the alumina lattice, as demonstrated in Fig. S2. Thus, it is inferred that the rearrangement of oxygen ions is suppressed and thus the cooperative motion of the ions, the rate controlling step of the transition to α -Al₂O₃, is restricted.

3.2. Vacuum calcination effect and coupling effect

Powders of 0%Cr and 1%Cr were used to study the vacuum calcination effect and coupling effect. The XRD patterns of powders calcined at 800 °C and 1000 °C for 4 h in vacuum and in air are summarized in Fig. 3. It can be seen that samples heated in vacuum transformed to α -Al₂O₃ at a much lower temperature. For instance, partial transformation to α -Al₂O₃ was observed for 0%Cr vacuum annealed at 1000 °C and 1%Cr vacuum annealed at 800 °C, and a complete transformation to α -Al₂O₃ was achieved for 1%Cr vacuum annealed at 1000 °C. It indicates that although chromia doping by itself inhibits the phase transition to α -Al₂O₃, chromia doping combined with vacuum calcination has a more favorable effect of accelerating the phase transformation to α -Al₂O₃ than the single vacuum calcination without chromia doping. The following discussion will be mainly focused on the coupling effect of vacuum calcination and chromia doping, i.e. the phase evolution of 1%Cr powders and the possible mechanism will be intensely discussed. To make it simple, the 1%Cr powders calcined at 800 °C in air and vacuum are henceforth denoted as S1 and S2, respectively.

To reiterate, all the as-prepared precursors were heated at 600 °C for 2 h to remove the hydroxyl species before further calcination and the XRD spectra confirm a pure γ -Al₂O₃ phase of the heated oxides. Fig. 4 depicts the TEM images and selected area electron diffraction (SAED) patterns of S1 and S2. Compared with the SAED patterns of S1, some other diffraction spots, assigned to α -Al₂O₃ planes of (214), (113) and θ -Al₂O₃ or α -Al₂O₃ may exist in S2. In addition, it is clear that the average crystallite size of the particles (10–20 nm) after vacuum calcination. Also, it should be mentioned that despite the absence of amorphous phase in XRD spectra, amorphous characteristic halos arise in the SAED patterns. The halos are probably attributed to the ultra-thin amorphous carbon supporting films used in the TEM analysis.

HRTEM images of S1 and S2 are given in Fig. 5. The d-spacing labeling results indicate that both S1 and S2 have the phase of θ -Al₂O₃. In addition, for S2 it appears that planes (113) and (024) of α -Al₂O₃ coordinate with the plane (112) of θ -Al₂O₃. However, only γ -Al₂O₃ and α -Al₂O₃ are sorted out in the XRD spectra. Thus, it suggests that there exists a tiny amount of the intermediate phase of θ -Al₂O₃ in S2, hence the transformation of θ -Al₂O₃ to α -Al₂O₃ swiftly completed for S2.

The XRD results (Fig. 3) indicate that the vacuum calcination combined with chromia doping can significantly reduce the transformation temperatures (at least 200 °C) of γ -Al₂O₃ to α -Al₂O₃. To locate the critical temperature related to the coupling effect, the vacuum calcination temperature of 1%Cr was lowered to 700 °C. The XRD result shows that a pure phase of γ -Al₂O₃ was obtained for 1%Cr after calcination in both vacuum and air at 700 °C. Generally, XRD analysis can identify the main phase, but it is impossible to screen out trace phases. Due to the significant luminescent ability of Cr³⁺ ions in α -Al₂O₃, it is assumed that the luminescence spectra could be an effective way to detect the trace amounts of α -Al₂O₃.

Fig. 6 presents the luminescence spectra of 1%Cr calcined at different temperatures. After vacuum calcination at 800 °C, a sharp and intense doublet, commonly labeled R_1 and R_2 at 692–695 nm was detected. The doublet phenomenon is attributed to the Cr^{3+} ions in a high

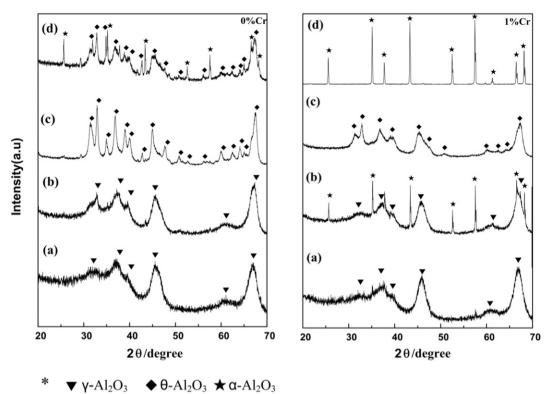


Fig. 3. XRD patterns of the 0%Cr and 1%Cr powders calcined for 4 h at (a) 800 °C, in air, (b) 800 °C, in vacuum, (c) 1000 °C, in air, and (d) 1000 °C, in vacuum.

crystal-field environment under the distorted octahedral symmetry of ionic oxygen in α -Al₂O₃ [23]. The doublet at the same wavelength position is also observed for 1%Cr after vacuum calcination at 700 °C and 600 °C, confirming that a phase transformation to α -Al₂O₃ occurs even at lower temperature of 600 °C. However, after vacuum calcination at 550 °C, the two distinct lines did not appear. Therefore, the critical temperature for the coupling effect should be positioned between 550 °C and 600 °C.

3.3. Mechanism discussion

Taking into account the results in subsections (3.1) and (3.2), it is demonstrated that compared to chromia doping effect, chromia doping

coupled with vacuum calcination can better promote the phase transition to α -Al₂O₃. In order to investigate the inner mechanism, techniques regarding the characterization of electronic structures and Al–O bonds of the alumina powders were further employed.

Fig. 7 presents the PL spectra of 1%Cr calcined in different conditions using a 632.8-nm Ar excitation laser. It can be seen from Fig. 7(e) that the PL spectrum of 1%Cr after air calcination at 800 °C displayed a broad band (>700 nm) emission feature, which was attributed to the Cr³⁺ in a weak field situation of γ -Al₂O₃, as Lu and Kulinkin reported [24,25]. As for 1%Cr after vacuum calcination at 800 °C, the strongly inhomogeneously broadened spectra and a narrow doublet are observed simultaneously. The broad band remains unaltered after vacuum calcination, indicating that chromium ion states in γ -Al₂O₃ remain

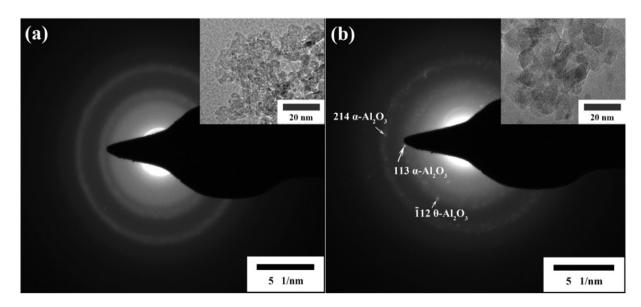


Fig. 4. Selected area electron diffraction and TEM photographs of the 1%Cr sample calcined at 800 °C for 4 h in (a) air and (b) vacuum.

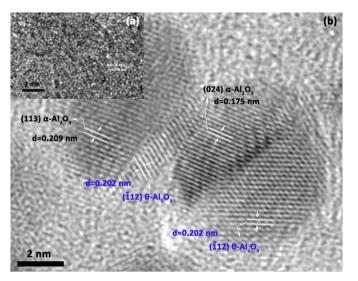
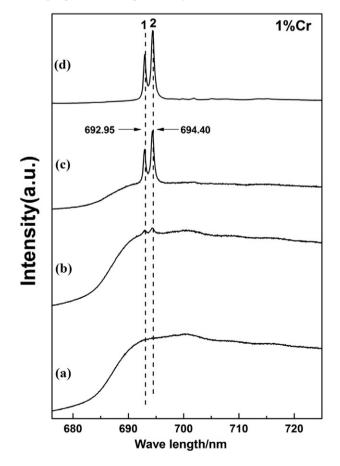
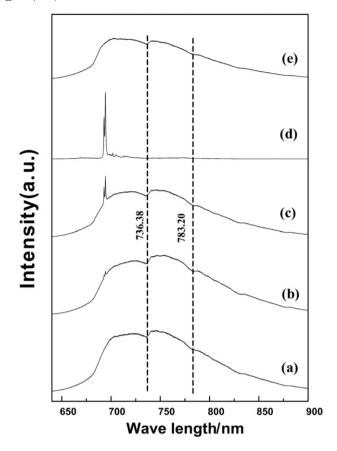




Fig. 5. High resolution image of (a) S1 and (b) S2.

almost unaffected. The sharp doublet corresponds to the R-lines $({}^{2}E_{g} \rightarrow {}^{4}A_{2g})$ of Cr^{3+} in α -Al₂O₃, as observed in Fig. 6. Therefore, the 1%Cr powders after air calcination at 800 °C mainly comprise of Cr doped γ -Al₂O₃ whereas powders after vacuum calcination at 800 °C constitute Cr doped γ -Al₂O₃ and Cr doped α -Al₂O₃. The PL result is consistent with the XRD and TEM results as shown in Figs. 3 and 4. Additionally, features similar to that of 1%Cr vacuum calcined at 800 °C and 600 °C, unfolding a predominant phase of γ -Al₂O₃ and α -Al₂O₃. When the

Fig. 6. Luminescence spectra of the 1%Cr sample calcined in vacuum for 4 h at (a) 550 °C, (b) 600 °C, (c) 700 °C, and (d) 800 °C.

Fig. 7. PL spectra of the 1%Cr sample calcined for 4 h at (a) 600 °C, in vacuum, (b) 700 °C, in vacuum, (c) 800 °C, in vacuum, (d) 1200 °C, in air, and (e) 800 °C, in air.

1%Cr powders were sintered in air at 1200 °C, a characteristic curve attributed to a pure phase of chromia doped α -Al₂O₃ emerged. However, in comparison with the powders sintered in air at 1200 °C (R₁ at 692.91 nm, R₂ at 694.32 nm), there is a red shift of R-line frequency for the powders after vacuum calcination (R₁ at 692.92 nm, R₂ at 694.37 nm). Scientifically, the increase in the R-line frequency is ascribed to the stronger crystal field at Cr³⁺ ions in α-Al₂O₃, which is commonly interpreted by a lattice expansion of the alumina due to chromia doping [23,26]. In our study of the coupling effect, the chromia doping concentration is fixed to 1 wt.% chromium (1.46 mol% chromia). Therefore, the red shift of R-lines after vacuum calcination aroused by a weaker crystal field at Cr³⁺ ions probably resulted from the formation of weaker Cr–O bonds in α-Al₂O₃.

In order to give an insight into the mechanism, FTIR analysis concerning the Al–O bonding strength in the bulk was implemented. Fig. 8 presents the FTIR spectra of S1, S2 and two other reference samples, i.e. 1%Cr sintered at 1000 °C with the main phase of θ -Al₂O₃ (denoted as S3) and 1%Cr sintered at 1200 °C with the phase of α -Al₂O₃ (denoted as S4), respectively. It is previously reported that in aluminum oxides, if the coordination is octahedral (AlO₆), the Al–O stretching and bending modes are expected in 500–750 cm⁻¹ and 330–450 cm⁻¹, respectively. Nevertheless, a tetrahedral coordination (AlO₄) is expected to give stretching modes between 750 and 850 cm⁻¹ and bending modes in the narrow range 250–320 cm⁻¹ [27].

In the infrared spectrum of S4, peaks at 721, 638 and 588 cm⁻¹ are assigned to the stretching modes of AlO₆, while the bands observed at 492 and 447 cm⁻¹ are assigned to the bending modes of AlO₆. It is evident that S4 simply contains octahedral Al–O coordination, indicating a pure phase of chromia doped α -Al₂O₃ [28]. Comparing the infrared spectra of S1 and S3, they both include three peaks at 829, 768 and 567 cm⁻¹, but with different fine structures. Compared to S3, the peaks of S1 are much broader, probably because of the surface

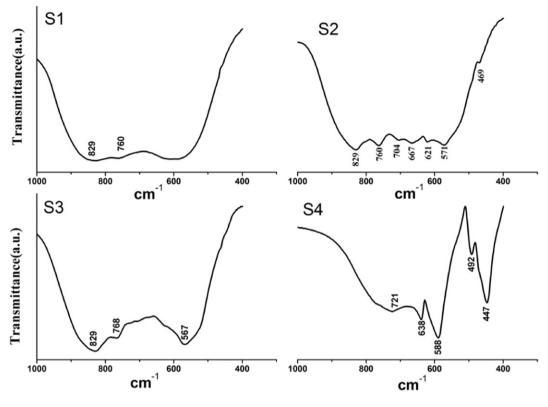
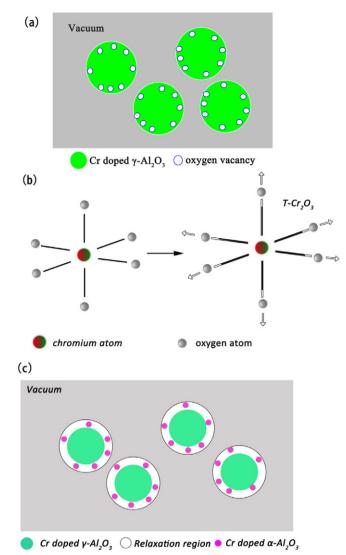


Fig. 8. FTIR spectra for S1, S2, S3 and S4.

effect or the increasing dangling bonds caused by a smaller grain size [27,29]. As for S2, given its phase compositions of γ -Al₂O₃, θ -Al₂O₃ and α -Al₂O₃, the peaks are assigned into three different groups. According to the spectra of S1, S3 and S4, it is safe to infer that peaks at 829 and 760 cm⁻¹ were attributed to the AlO₄ stretching modes of θ -Al₂O₃ or γ -Al₂O₃, and the band at 469 cm⁻¹ belongs to the AlO₆ bending modes in γ -Al₂O₃, as documented in the literature [27]. Also, compared with the spectra of S2, it is obvious that peaks assigned to γ -Al₂O₃ for S1 are much broader, indicating a much smaller grain size of S1 [29]. In terms of the stretching modes of AlO₆ for S2, the band observed at 667 cm^{-1} is probably attributed to the AlO₆ stretching modes in θ -Al₂O₃, whereas the bands at 704, 621 and 571 cm⁻¹ are attributed to the AlO₆ stretching modes in α -Al₂O₃. Additionally, in comparison of the spectra of S4 and S2, it can be seen that there is a 17 cm^{-1} frequency shift of the AlO₆ stretching modes in α -Al₂O₃, i.e. from 721, 638 and 588 cm^{-1} in S4 to 704, 621 and 571 cm^{-1} in S2, respectively. Consequently, the vacuum calcination leads to a weaker Al-O bonding in α -Al₂O₃, in good accordance with the PL spectra. The vibrational frequencies are summarized in Table 1.

Table 1
Observed vibrational transitions (cm ⁻¹) and assignments for S1–S4.

S1	S2	S3	S4	Assignments
829	829	829		ν AlO ₄
760	760	768		
	704		721	νAlO_6
	667			
	621		638	
	571	567	588	
	469		492	δ AlO ₆
			447	


 ν , stretching; δ , bending.

To give a possible mechanism of the coupling effect, some important postulates and results are listed, as follows:

- Chromium is uniformly incorporated into the alumina prepared via a conventional co-precipitation process, and no obvious migration during calcination.
- Phase transformation to α-Al₂O₃ in our experiment obeys the diffusional nucleation mechanism. A critical crystal size is necessary and diffusional nucleation is more favorable at surfaces or other low energy sites.
- The average crystallite size of γ-Al₂O₃ after vacuum calcination is larger than that of air calcination, as determined by TEM and FTIR results.
- For S2, the phase transformation of θ -Al₂O₃ to α -Al₂O₃ is quickly completed, as demonstrated by the HRTEM and XRD results.
- Compared to S1, weaker Al–O and Cr–O bonds in α-Al₂O₃ were obtained in S2, as confirmed by PL and FTIR results.

Heating in a rarefied environment will be conducive to molecular or ionic desorption from solid surface. Liu et al. reported F⁺ center emission (an oxygen-ion vacancy occupied by two electrons) in γ -Al₂O₃ derived by thermal dehydration of boehmite, similar to the case in our study [30]. Therefore, the vacuum calcination effect is probably due to the increase of oxygen vacancy concentration, which may introduce new surface nucleation sites. Thus, the increase of nucleation density followed by an increase of the diffusional growth rate reduces the incubation time to form a 'critical size'.

As discussed in subsection (3.1), the inhibition of transformation to α -Al₂O₃ caused by chromia doping is probably ascribed to the larger size of chromium ions over aluminum ions, i.e. chromium ions are restricted in the alumina lattice and thereby cannot act as a template like the independent hexagonal phase of chromia. Based on the comprehensive results, a possible mechanism is proposed to interpret the coupling effect according to the observed results and the classic phase transformation theory.

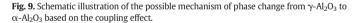


Fig. 9 (a)–(c) presents schematics of the sequence of the transformation to α -Al₂O₃ on the basis of coupling effect. Fig. 9 (a) shows the initial configuration of the Cr doped γ -Al₂O₃ powders. It is probably due to the increasing oxygen vacancies on the surface of γ -Al₂O₃ grains during vacuum calcination that more favorable surface nucleation sites are generated. In the next stage, together with the increase of new nucleation sites, it is inferred that surface relaxation occurs on the surface of γ -Al₂O₃ grains, causing an extension of the Cr–O and Al–O bonding. As a result, the restrained Cr-O bonds transform to a state approximate to the CrO₆ state (octahedral Cr–O coordination) in the hexagonal phase Cr₂O₃, which can be regarded as a template for α -Al₂O₃ nucleation. The transitional state of CrO₆ during vacuum calcination is denoted as T-Cr₂O₃, as shown in Fig. 9 (b). Aside from the rising nucleation sites introduced by vacuum calcination, the nucleation barrier for the formation of α -Al₂O₃ nuclei is also reduced by the occurrence of $T\mathchar`-\mbox{Cr}_2O_3$ and the transformation to $\alpha\mathchar`-\mbox{Al}_2O_3$ is readily completed, as shown in Fig. 9(c). Briefly, the coupling effect can dramatically enhance the kinetic rate of the phase transformation from γ -Al₂O₃ to α -Al₂O₃, leading to a distinct temperature reduction (at least 200 °C) in the inauguration of phase evolution. We believe that this finding will provide a promising technique and some new insights in the fabrication of thermodynamically stable alumina in forms of either powders or coatings under relatively moderate temperature condition.

4. Conclusions

In summary, nanoscale Cr doped Al_2O_3 powders were successfully prepared by using $Al(NO_3)_3$ and $Cr(NO_3)_3$ as the precursors via coprecipitation process and the coupling effect of the chromia doping and vacuum calcination on the phase transition of Al_2O_3 was scrutinously investigated. It may be safe to draw the following conclusions:

- (1) Chromia doping by itself inhibits the phase transformation to α -Al₂O₃, probably due to the resistance of cooperative motions of the ions caused by the larger ionic radius of chromium ions over aluminum ions.
- (2) Vacuum calcination can accelerate the phase transformation to α -Al₂O₃, and the chromia doping coupled with the vacuum calcination significantly reduces the phase transition temperature by 200–400 °C.
- (3) A novel possible mechanism based on the surface reconstruction and classic phase transformation theory is proposed to interpret the coupling effect.

Acknowledgment

This research was funded by the State Key Laboratory of Surface and Chemistry, China Academy of Engineering Physics (No. SPC 201102), the National Basic Research Program of China (973 Program) under grant No. 2011CB61050, the NSAF program (No. U1430118), the Chinese National Fusion Project for ITER (No. 2013GB110000) and the 56th China Postdoctoral Science Foundation (Grant No. 2014M560980).

Appendix A. Supplementary data

Supplementary data to this article can be found online at http://dx. doi.org/10.1016/j.powtec.2016.02.045.

References

- B.L. Moroz, P.A. Pyrjaev, V.I. Zaikovskii, V.I. Bukhtiyarov, Nanodispersed Au/Al₂O₃ catalysts for low-temperature CO oxidation: results of research activity at the Boreskov Institute of Catalysis, Catal. Today 144 (2009) 292–305.
- [2] S.B. Gurel, A. Altun, Reactive alumina production for the refractory industry, Powder Technol. 196 (2009) 115–121.
- [3] A.R. Keshavarz, M. Rezaei, F. Yaripour, Nanocrystalline gamma-alumina: a highly active catalyst for dimethyl ether synthesis, Powder Technol. 199 (2010) 176–179.
- [4] C.F. Chen, Z.D. Ding, Q. Tan, H.H. Qi, Y.H. He, Preparation of nano alpha-alumina powder and wear resistance of nanoparticles reinforced composite coating, Powder Technol. 257 (2014) 83–87.
- [5] J.M. McHale, A. Auroux, A.J. Perrotta, A. Navrotsky, Surface energies and thermodynamic phase stability in nanocrystalline aluminas, Science 277 (1997) 788–791.
- [6] I. Levin, D. Brandon, Metastable alumina polymorphs: crystal structures and transition sequences, J. Am. Ceram. Soc. 81 (1998) 1995–2012.
- [7] R.B. Bagwell, G.L. Messing, P.R. Howell, The formation of alpha-Al₂O₃ from theta-Al₂O₃: the relevance of a "critical size" and: diffusional nucleation or "synchroshear"? J. Mater. Sci. 36 (2001) 1833–1841.
- [8] T.D. Isfahani, J. Javadpour, A. Khavandi, R. Dinnebier, M. Goodarzi, H.R. Rezaie, Mechanochemical synthesis of alumina nanoparticles: formation mechanism and phase transformation, Powder Technol. 229 (2012) 17–23.
- [9] R.K. Pati, J.C. Ray, P. Pramanik, A novel chemical route for the synthesis of nanocrystalline alpha-Al₂O₃ powder, Mater. Lett. 44 (2000) 299–303.
- [10] D.L. Smith, J. Konys, T. Muroga, V. Evitkhin, Development of coatings for fusion power applications, J. Nucl. Mater. 307 (2002) 1314–1322.
- [11] K. Okada, A. Hattori, Y. Kameshima, A. Yasumori, R.N. Das, Effect of monovalent cation additives on the gamma-Al₂O₃-to-alpha-Al₂O₃ phase transition, J. Am. Ceram. Soc. 83 (2000) 1233–1236.
- [12] K. Okada, A. Hattori, T. Taniguchi, A. Nukui, R.N. Das, Effect of divalent cation additives on the gamma-Al₂O₃-to-alpha-Al₂O₃ phase transition, J. Am. Ceram. Soc. 83 (2000) 928–932.
- [13] J.L. McArdle, G.L. Messing, Transformation, microstructure development, and densification in alpha-Fe₂O₃-seeded boehmite-derived alumina, J. Am. Ceram. Soc. 76 (1993) 214–222.
- [14] T. Li, S.G. Yang, Y.W. Du, Strongly luminescent Cr-doped alumina nanofibres, Nanotechnology 16 (2005) 365–368.
- [15] M. Catti, G. Sandrone, G. Valerio, R. Dovesi, Electronic, magnetic and crystal structure of Cr₂O₃ by theoretical methods, J. Phys. Chem. Solids 57 (1996) 1735–1741.

- [16] J. Li, Y.B. Pan, C.S. Xiang, Q.M. Ge, J.K. Guo, Low temperature synthesis of ultrafine alpha-Al₂O₃ powder by a simple aqueous sol-gel process, Ceram. Int. 32 (2006) 587–591.
- [17] G.C. Bye, G.T. Simpkin, Influence of Cr and Fe on formation of alpha-Al₂O₃ from gamma-Al₂O₃, J. Am. Ceram. Soc. 57 (1974) 367–371.
- [18] J.M. Andersson, E. Wallin, V. Chirita, E.P. Munger, U. Helmersson, Ab initio calculations on the effects of additives on alumina phase stability, Phys. Rev. B 71 (2005).
 [19] E. Wallin, T.I. Selinder, M. Elfwing, U. Helmersson, Synthesis of alpha-Al(2)O(3) thin
- films using reactive high-power impulse magnetion sputtering, EPL 82 (2008). [20] P. Jin, G. Xu, M. Tazawa, K. Yoshimura, D. Music, J. Alami, U. Helmersson, Low tem-
- [20] F. Jin, G. Au, W. Izzawa, K. Foshinita, D. Music, J. Admi, C. Heinersson, Edw tenperature deposition of alpha-Al₂O₃ thin films by sputtering using a Cr₂O₃ template, J. Vac. Sci. Technol. A 20 (2002) 2134–2136.
- [21] J. Cai, B. Xu, G. Ling, Observation on the Interface of alpha-Al₂O₃/Cr₂O₃: prepared by oxidation of Al₄₅Cr₇, Appl. Surf. Sci. 268 (2013) 111–116.
- [22] M. Catti, G. Valerio, R. Dovesi, M. Causa, Quantum-mechanical calculation of the solid-state equilibrium MgO + alpha-Al₂O₃-reversible-arrow-MgAl₂O₄ (spinel) versus pressure, Phys. Rev. B 49 (1994) 14179–14187.
- [23] B. Henderson, G. Imbusch, Optical Spectroscopy of Inorganic Solids, Clarendon Press, Oxford, 1989.

- [24] L. Shen, C. Hu, S. Zhou, A. Mukherjee, Q. Huang, Phase-dependent photoluminescence behavior of Cr-doped alumina phosphors, Opt. Mater. 35 (2013) 1268–1272.
- [25] A.B. Kulinkin, S.P. Feofilov, R.I. Zakharchenya, Luminescence of impurity 3d and 4f metal ions in different crystalline forms of Al₂O₃, Phys. Solid State 42 (2000) 857–860.
- [26] H.J. Yu, D.R. Clarke, Effect of codoping on the R-line luminescence of Cr³⁺-doped alumina, J. Am. Ceram. Soc. 85 (2002) 1966–1970.
- [27] C.H. Shek, J.K.L. Lai, T.S. Gu, G.M. Lin, Transformation evolution and infrared absorption spectra of amorphous and crystalline nano-Al₂O₃ powders, Nanostruct. Mater. 8 (1997) 605–610.
- [28] G.K. Priya, P. Padmaja, K.G.K. Warrier, A.D. Damodaran, G. Aruldhas, Dehydroxylation and high temperature phase formation in sol-gel boehmite characterized by Fourier transform infrared spectroscopy, J. Mater. Sci. Lett. 16 (1997) 1584–1587.
- [29] C.S. Zhang, F. Zhao, J.J. Zhang, X.Y. Wang, G.L. Bao, Infrared spectroscopic studies of alumina on a nanometer scale, Acta Chim. Sin. 57 (1999) 275–280.
 [30] S. Liu, L. Zhang, Y. Fan, J. Luo, P. Zhang, L. An, Ultraviolet irradiation-induced
- [30] S. Liu, L. Zhang, Y. Fan, J. Luo, P. Zhang, L. An, Ultraviolet irradiation-induced photoluminescence degradation in gamma-alumina nanoparticles, Appl. Phys. Lett. 89 (2006).