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4 ABSTRACT: Co−Pt alloyed catalyst particles are integral to
5 commercial fuel cells, and alloyed nanoparticles are important in
6 many applications. Such systems are prohibitive to fully character-
7 ize with electronic structure calculations due to their relatively
8 large sizes of hundreds to thousands of atoms per simulation, the
9 huge configurational space, and the added expense of spin-

10 polarized calculations. Machine-learned potentials offer a scalable
11 solution; however, such potentials are reliable only if representative
12 training data can be employed, which typically also requires large
13 electronic structure calculations. Here, we use the nearsighted-
14 force training approach that allows us to make high-fidelity
15 machine-learned predictions on large nanoparticles with >5000
16 atoms using only small and systematically generated training
17 structures ranging from 38 to 168 atoms. The resulting ensemble model shows good accuracy and transferability in describing the
18 relative energetics for Co−Pt nanoparticles with various shapes, sizes, and Co compositions. It is found that the fcc(100) surface is
19 more likely to form an L10 ordered structure than the fcc(111) surface. The energy convex hull of a 147-atom icosahedron shows
20 that the most stable particles have Pt-rich skins and Co-rich underlayers and is in quantitative agreement with one constructed by
21 brute-force first-principles calculations. Although the truncated octahedron is the most stable shape across all studied sizes of Pt
22 nanoparticles, a crossover to the icosahedron exists for CoPt nanoparticle alloys due to a large downshift of surface energy. The
23 downshift can be attributed to strain release on the icosahedral surface due to Co alloying. We introduced a simple empirical model
24 to describe the role of Co alloying in the crossover for Co−Pt nanoparticles. With Metropolis Monte Carlo simulations, we
25 additionally searched for the most stable atomic arrangement for a truncated octahedron with equal Pt and Co compositions, and
26 also we studied its order−disorder phase transition. We validated the most stable configurations with a new highly scalable density
27 functional theory code called SPARC. From the outermost shell to the center of a large Co−Pt truncated octahedron, the atomic
28 arrangement follows a pattern: Pt → Co → L12(Pt3Co) → L12(PtCo3) → L10(PtCo) → ··· → L10(PtCo). Lastly, the order−
29 disorder phase transition for a Co−Pt nanoparticle exhibits a lower transition temperature and a smoother transition compared to
30 the bulk Co−Pt alloy.

1. INTRODUCTION
31 Bimetallic nanostructures have received increasing attention in
32 the past two decades.1−3 Among the family of bimetallic
33 nanostructures, Co−Pt nanoparticles have a wide range of
34 applications in heterogeneous catalysis and magnetic storage.4−7

35 Co−Pt nanoparticles have been commercialized as electro-
36 catalysts in fuel-cell electric vehicles such as the Toyoto Mirai.8,9

37 The size, composition, shape, and orderliness of Co−Pt
38 nanoparticles all play a pivotal role in controlling the structure
39 and hence the chemical and physical properties, including the
40 catalytic activity. We provide several examples below and note
41 they are not all in agreement with one another. For example, Li
42 et al. have shown that a core−shell Co−Pt nanoparticle with an
43 ordered core loses fewer Co atoms in electrocatalysis
44 applications than that with a random core.4 Others have
45 shown that the magnetic and optical properties are closely
46 associated with the orderliness of the structure.10,11 Yang et al.

47suggested, based on Monte Carlo simulations, that disordering is
48initiated at the surface due to the reduced coordination, hence
49lowering the ordering temperature.12 Müller and Albe pointed
50out that surface segregation of one element can have a large
51impact on the ordering.13 Alloyeau et al. showed in both
52experiments and simulations that the shape and size affect the
53order−disorder transition, indicating that a larger nanoparticle
54tends to show a higher transition temperature and the size effect
55is uniquely determined by the smallest length of a nano-
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56 particle.14 Alloyeau’s large-scale simulation was based on tight-
57 binding potentials fitted to experimental and first-principles
58 calculations, and the most stable structure for an equal-
59 composition nanoparticle was identified to be a fully L10
60 ordered truncated octahedron.14 However, first-principles
61 calculations by Gruner et al.53 suggested that the most stable
62 shape of a Co−Pt nanoparticle at small sizes is not the L10
63 ordered regular truncated octahedron but a multiply twinned
64 icosahedron.
65 Pure Pt nanoparticles are normally stable in the single crystal
66 structure, whereas Pt alloy nanoparticles can exist in multiply
67 twinned structures such as an icosahedron,15−18 although the
68 shape of Pt nanoparticles can be controlled by capping
69 materials.19 It is thus crucial to understand the characteristics
70 of structure motifs, such as the icosahedron and octahedron. An
71 icosahedron is created by packing 20 tetrahedra in a manner that
72 they share a common vertex, leading to close-packed surfaces,

f1 73 but distorted tetrahedra (see Figure 1). This distortion leads to a
74 high internal strain with a relatively low surface energy.20 Thus,
75 icosahedra are normally more stable at small sizes, where the
76 surface energy prevails over the volume contribution.21

77 In contrast, an octahedron structure preserves the bulk lattice
78 symmetry�it can be obtained by directly cutting a single crystal.
79 The normal octahedron only has fcc(111) facets and has no
80 internal strain. To lower the total energy, the six “tips” of the
81 octahedra can be removed, creating a truncated octahedron22

82 (Figure 1). Although this raises the energy per surface area by
83 creating six fcc(100) facets, it lowers the total amount of surface
84 area, which suggests it may be more stable at larger sizes.23 The
85 cuboctahedron can be conceptualized in a similar way: starting
86 with a cube with six fcc(100) facets, the eight corners are cut off,
87 exposing eight new triangular fcc(111) facets (Figure 1).
88 The trade-off between surface and volume contributions lead
89 to possible crossovers in stability among structural motifs as the
90 particle size changes; for pure nanoparticles, past researchers
91 have used simple empirical thermodynamic models to describe
92 this phenomenon.22−25 In the case of bimetallic nanoparticles,
93 crossovers among various shapes have rarely been reported. For
94 the related case of Pd−Au particles, Zhu et al. used an empirical
95 model fit to density functional theory (DFT) calculated
96 properties to show that alloying of Pd can extend the stability
97 of icosahedron Pd−Au nanoparticles beyond that of pure Au

98nanoparticles because of the stress release when two different
99metals are mixed.26 Since the empirical potential was fit to a
100small number of properties, the prediction accuracy over a large
101range of different nanoparticle structures is uncertain. We are
102not aware of any crossover studies directly addressing Co−Pt
103nanoparticles.
104The crossovers in bimetallic nanoparticles are not likely to be
105fully understood without reliable descriptions of the atomic
106interactions. In an ideal world, such studies would employ
107electronic structure calculations directly. DFT offers a good
108compromise between accuracy and computational cost.
109However, model systems of practically sized nanoparticles,
110with sizes of 1000−10,000 atoms, are notoriously expensive for
111even single calculations, due to the famous N( )3 scaling, where
112N indicates the system scale, such as the number of electrons,
113number of atoms or number of basis functions. For nanoparticle
114structure exploration, the picture is more grim due to the huge
115combinatorial space that must be explored to describe the range
116of sizes, crystal structures, facets, and alloy (dis)ordering that
117may be encountered. Further, as a magnetic system, Co−Pt
118particles have an added expense in electronic structure due to
119the requirement for spin-polarized calculations. These combi-
120nations of factors make the rigorous exploration of the Co−Pt
121structure−function relationship out of reach for methods like
122DFT.
123Machine-learned interatomic potentials have gained momen-
124tum in fitting potential energy surfaces calculated by ab initio
125calculations.27−33 However, a fundamental problem arises in
126using atomistic machine learning to perform large-scale
127simulations: for high-fidelity potentials, the training data should
128closely resemble the ultimate structures being predicted and the
129generation of such training data for nanoparticles can be very
130costly, as described above. To circumvent this issue, we recently
131released a “nearsighted force-training” (NFT)34 approach to
132generate small-size training data to systematically learn the
133forces and energies of large structures. In this approach, a
134bootstrap ensemble35 (or any other reasonable uncertainty
135metric) is used to identify the most uncertain atoms in a
136particular structure. Atomic “chunks” centered on these
137uncertain atoms are removed and calculated at large enough
138size that the central atom’s force can be calculated with fidelity
139by DFT. Only the force on the central atom is used in the loss

Figure 1. Atomic configurations and geometrical shapes of nanoparticles in various shapes.
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140 function, thus adding targeted data and avoiding noise
141 associated with boundary atoms. We demonstrated that this
142 approach successfully built and relaxed nanoparticles containing
143 up to 1415 atoms in previous work.
144 Here we apply the NFT approach to build a robust ensemble
145 model for Co−Pt nanoparticles. Using these well-validated
146 neural network models, we optimize the structures of Co−Pt
147 alloys of simple bulk, fcc(111) surfaces, fcc(100) surfaces, and
148 icosahedron and octahedron nanoparticles of various sizes and
149 compositions. Moreover, we aim to address a number of key
150 problems regarding the thermodynamic stability of Co−Pt
151 nanoparticles, including the crossover among Pt and Co−Pt
152 structure motifs, the most stable atomic arrangement of a Co−Pt
153 truncated octahedron, and the order−disorder phase transition
154 of Co−Pt truncated octahedron.

2. METHODS
155 2.1. Model Creation with Nearsighted Force Training.
156 We used the nearsighted-force training (NFT) approach34 to
157 generate the machine-learning model without the need for large-
158 sized training data, which is expensive to obtain. In this method,
159 we started with a small training set consisting of 18 Co−Pt bulk
160 structures calculated in density functional theory (DFT),
161 sampled following the initialization procedure we previously
162 described.34 We trained a bootstrap ensemble35 of Behler−
163 Parinello-type machine-learning models to this minimal training
164 set; details of the model parameters are described later. When
165 this ensemble model is applied to a new structure, it gives a
166 systematic estimate of the uncertainty of each atom in that
167 structure.
168 We started the NFT active-learning procedure on a “rattled”
169 Pt192Co68 cuboctahedron, that is, we used the ensemble to
170 identify the most uncertain atom in the structure, and then we
171 pulled out a “chunk” of this atom and its neighbors within a
172 cutoff distance of 8 Å. This chunk was calculated in DFT, and
173 solely the force on the central atom was added to the training set.
174 The ensemble was restrained, and the procedure was repeated
175 on the next most uncertain atom. We terminated this process
176 after 9 NFT steps because the uncertainty did not improve in
177 two consecutive steps, and we wanted our model to be
178 optimized for low-force structures.
179 Next we performed a relaxation on this structure and used the
180 NFT model to extract uncertain chunks along the relaxation
181 trajectory, with the procedure we described earlier,34 leading to a
182 systematic improvement of the description of this relaxed
183 particle. We generally stopped the active learning process when
184 any of three criteria were met: the uncertainty was below the
185 convergence criterion, the number of retraining steps exceeded a
186 predefined number, or the target uncertainty was not lowered
187 for two continuous steps.
188 After we completed the NFT procedure on the Pt192Co68
189 particle, we continued to improve our model by training on a
190 variety of octahedral and icosahedral nanoparticles, allowing us
191 to find atomic chunks representing diverse local chemical
192 environments that are unique and informative for potential
193 energy surfaces of Co−Pt nanoparticles. The icosahedron
194 nanoparticles include Pt1415, fully disordered Pt736Co679, a
195 CoPt/2Pt core−shell with a disordered core (Pt1150Co265), a
196 CoPt/1Pt core−shell with a disordered core (Pt3092Co1991), and
197 a CoPt/2Pt core−shell with a disordered core (Pt3694Co1389).
198 The cuboctahedron nanoparticles include Pt192Co68 with a
199 disordered core, a Pt1415, a core−shell CoPt/Pt cluster
200 Pt975Co440 with a disordered core, a fully L10 ordered Co−Pt

201cluster Pt736Co679, and a fully disordered Co−Pt cluster
202Pt736Co679. In total, 2064 atomic “chunks” in sizes from 38 to
203168 atoms were extracted from those nanoparticles. Adding the
20418 bulk cells, we had a total of 2082 training images. By building
205the training set in this manner�as opposed to relying on human
206intuition, where similar structures are designed by hand�we
207can be confident that our training set is specialized to the
208structures of interest to this study.
209The statistics of these 2064 generated atomic chunks are
210discussed in the Supporting Information, including the
211distributions of forces on the central atom, number of atoms,
212force prediction residuals, and energy prediction residuals. The
213nanoparticle trajectories, training images (atomic chunks),
214force, and energy ensemble models are included as Supporting
215Information sets.
2162.2. Model Structure. We took a bootstrap approach35 to
217sample the training images for each neural network model, and
218our ensemble consisted of 10 neural network models. Ensemble
219averages were used as the predictions for both the energy and
220forces. Atomic uncertainties were proportional to standard
221deviations of the ensemble force predictions, as used in Zeng et
222al.34 Each member of neural network models is a Behler−
223Parrinello type.27 Neural network models were constructed
224using an open-source atomistic machine learning package
225(AMP) developed in our group.36 Fast force and energy
226inferences were carried out with n2p2, which is mainly
227developed by Singraber et al.37 Fast fingerprinting was
228performed with SIMPLE-NN implemented with Amp-
229Torch.38,39 Gaussian symmetry functions with a cutoff radius
230of 6.5 Å were used to encode the local chemical environments.
231For the feature vector of Co elements, it consists of 12 G2 and 8
232G4 symmetry functions, where the Pt feature vector comprises
23313 G2 and 7 G4 symmetry functions. Full details of the
234symmetry functions are included in the Supporting Information
235set in the JSON format. 3000 epochs were used for training. A
236simple structure of (20, 5, 5, 1) was employed for the neural
237network topology to mitigate overfitting. A L2 regularization (L2
238= 0.001) was used to avoid large atomic neural network weights,
239hence alleviating the overfitting. To avoid the challenges of
240creating a model that can produce consistent force and energy
241predictions over wide regions of configuration space, we trained
242both a force ensemble model and an energy ensemble model on
243our 2082 images, referred to hereafter as the force model and
244energy model, respectively. This was done in order to allow our
245model sizes to be smaller and our training procedures to be faster
246with each individual model optimized for its own prediction of
247interest. The force model was trained on the forces of central
248atoms of atomic chunks and on both energy and forces of bulk
249cells. The energy model was trained on the total energies of the
250bulk cells and atomic chunks.
2512.3. Electronic Structure Calculations. DFT calculations
252for bulk, atomic chunks and 201-atom nanoparticles were
253carried out with the GPAW code.40 The Perdew−Burke−
254Ernzerhof (PBE) exchange−correlation functional with a plane
255wave cutoff of 350 eV was used.41 To achieve a fast convergence,
256a Fermi−Dirac smearing of 0.1 eV was utilized, and the
257energetics were extrapolated to 0 K. Calculations for atomic
258chunks were sampled at the Γ-point of the Brillouin zone, where
259calculations for bulk cells used a k-point grid of 12 × 12 × 12. For
260atomic structures, including cobalt, spin polarization was
261included. When only platinum was present, the calculations
262were spin-paired. The lattice constant of bulk Pt was found to be
2633.936 Å. Atomic chunks were placed in a nonperiodic box where
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264 the shortest distance to the box wall is at least 5 Å. Self-consistent
265 field (SCF) calculations were considered to be converged when
266 the energy difference between the last three steps is less than
267 0.0001 eV/electron. Structure optimizations used an MDMin
268 algorithm until the maximum atomic force was not larger than
269 0.05 eV/Å.
270 DFT calculations of the 586-atom particles were done using
271 the highly parallel “Simulation Package for Ab-initio Real-space
272 Calculations” (SPARC) code.42−44 To the best of our
273 knowledge, this calculation represents the largest size of Co−
274 Pt nanoparticles that has ever been studied directly with DFT. A
275 mesh spacing of 0.13 Å (0.25 bohr radii) was used in a Γ-point
276 calculation with the PBE functional and the PseudoDojo
277 pseudopotentials,45 and all calculations were run until the
278 energy converged to within 2.7 × 10−4 eV/atom (1 × 10−5 Ha/
279 atom). Atomic forces were computed and compared with
280 GPAW results for smaller systems, which showed that the mean
281 absolute force error between the codes is below 0.025 eV/Å for
282 all systems tested (see Figure S3 in the Supporting Information).
283 Particles were surrounded by 3.5 Å of vacuum in each direction
284 with Dirichlet boundary conditions in all directions.
285 Note that unlike our prior publication,34 in this work, we dealt
286 with a magnetic system. The underlying assumption for NFT to
287 be applicable for magnetic systems is that in the electronic
288 ground state, there exists a unique mapping from atomic
289 positions to spin states (or magnetic moments), which also
290 display a strong locality. In general, forces may depend on the
291 initial guess of magnetic moments since a poor initial guess may
292 lead to a different local-minimum spin configuration. Thus, we
293 have used a consistent initial-guess strategy for all calculations,
294 with an initial magnetic moment of 0 μB for Pt atoms and 2.1 μB
295 for Co atoms.
296 2.4. Global Optimization Techniques. We aimed to
297 explore a wide range of potential energy surfaces with an
298 emphasis on structures of nanoparticles in various shapes. We
299 were particularly interested in the global minima for a given
300 shape, size, and alloy composition. However, searching global
301 minima by using a brute-force approach is computationally
302 prohibitive. For example, if we consider a small fixed-shape 147-
303 atom nanoparticle with 73 Co and 74 Pt atoms, the number of
304 possible atomic arrangements is already as large as 147!/(73! ×
305 74!) ≈ 1044. Although symmetry can reduce the complexity,
306 attempting to exhaust the search space is inaccessible even with
307 machine-learned potentials, especially for large nanoparticles of
308 thousands of atoms. Instead, we used global optimization
309 techniques, specifically genetic algorithms and Metropolis
310 Monte Carlo simulations.
311 2.4.1. Genetic Algorithms.Genetic algorithms, inspired from
312 evolutionary theory, have become popular in the past two
313 decades for optimizing structures.46−50 The genetic algorithm
314 was performed on both Co−Pt surfaces and a type of Co−Pt
315 icosahedron to construct energy convex hulls. The genetic
316 algorithm was set up with the Atomic Simulation Environment
317 (ASE)51 based on the procedure implemented by Lysgaard et
318 al.49 and Van den Bossche et al.50 We used a rigid structure; that
319 is, all derived structures are not allowed to relax. Structural
320 relaxation was performed afterward if needed. To make
321 comparisons between different compositions, we define the
322 negation of the mixing energy Ef(PtxCoy) of a structure PtxCoy as
323 the fitness score to propagate the algorithm

=
+

+

+

+

E E x
x y

E

y
x y

E

(Pt Co ) (Pt Co ) (Pt )

(Co )

x y x y x y

x y

f

324(1)

325where E(PtxCoy), E(Ptx+y), and E(Cox+y) denote the ML model
326calculated per-atom energies of the corresponding structures.
327We first studied the fcc(111) and fcc(100) surfaces. For the
328fcc(111) and fcc(100) surfaces, we used a 4 × 4 × 5 supercell
329with a size of 80 atoms with 13 Å separation between slabs in the
330direction orthogonal to the surface. The initial generation was
331populated with 120 surfaces by using randomly chosen
332compositions. The lattice constants of pure Co and Pt slabs
333were determined by the force model, and for the mixed slabs, the
334lattice constant is linearly interpolated based on Vegard’s law.
335We used three ASE operators to create the next generation.
336“CutSpliceCrossover”, as introduced by Deaven and Ho,46 takes
337two parent structures, then cuts them in a random plane, and
338combine the halves from two parent slabs together to form an
339offspring. The second operator “RandomSlabPermutation” was
340used to randomly permute two atoms of different types. The last
341“RandomCompositionMutation” changes the composition of
342the slab by mutating one element to the other. The probability of
343the above three operators are, respectively, 0.6, 0.2, and 0.2. In
344addition, we used a variable function named “RankFitness-
345Population” to uphold the composition diversity at each
346generation so that optimization is performed on a full range of
347compositions. We ran the experiments for 100 generations.
348This approach was also used to build the convex hull of a 147-
349atom Co−Pt icosahedron nanoparticle. The initial generation
350was populated with 100 members, the composition was
351randomly chosen, and the lattice constant was obtained by
352linear interpolation. For the icosahedron nanoparticle, we were
353interested in the fittest Co/Pt composition; hence, we did not
354restrict the algorithm to keep a wide range of compositions in
355each generation. For the nanoparticles, four types of operations
356were utilized to create the offspring, including “CutSpliceCross-
357over”, “RandomSlabPermutation”, “MirrorMutation” (to mirror
358half of the cluster in a randomly oriented cutting plane while
359discarding the other half), and “SymmetricSubstitue” (to
360permute all atoms within a shell of the symmetric particle),
361and the corresponding operation probabilities are 3/6, 1/6, 1/6,
362and 1/6, respectively. This experiment was also run for 100
363generations. After the runs were completed, we chose to study
364structures after the 80th generation. We pinpointed the Co−Pt
365icosahedron with the most negative formation energy, which is
366named the fittest Co−Pt icosahedron. We calculated the Pt
367composition of the fittest structure, and we selected structures
368whose mole fractions of Pt are close to the fittest one based on a
369Gaussian function. In total, 232 Co−Pt icosahedron nano-
370particles were selected, and energetics of their relaxed structures
371were used to construct the energy convex hull for the 147-atom
372Co−Pt icosahedra.
3732.5. Metropolis Monte Carlo Simulations. Previous
374works suggested that while a genetic algorithm was more
375efficient to search a wide range of compositions, Metropolis
376Monte Carlo simulations were found to be more effective for
377structures with fixed compositions.12,13,52 We thus employed
378such Metropolis calculations in the canonical ensemble. At each
379elementary Monte Carlo step, two neighboring atoms of
380different element types were exchanged, and the energy change
381was calculated for the exchange. The new structure was accepted
382if the energy change was negative or it is accepted based on the
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383 Boltzmann probability if the energy change was positive. The
384 number of Monte Carlo steps was determined in a way that on
385 average, at least 40 swaps were performed for each atom in the
386 structure. We used these simulations at 300 K to find the
387 putative global minima of truncated octahedra Pt96Co105 and
388 Pt300Co286, and we compared them to the fully L10 ordered
389 counterpart at full DFT levels of theory. We also used these
390 simulations at temperatures ranging from 300 to 1800 K to study
391 the order−disorder phase transitions for Co−Pt bulk and
392 nanoparticles with nearly equal compositions of Co and Pt. For
393 each Monte Carlo trajectory at a given temperature, the order
394 parameter was calculated as the average over the configurations
395 after a burn-in period.

3. RESULTS AND DISCUSSION
396 The key objective of this study is to train robust machine
397 learning models that can predict stable structures of nano-
398 particles, which we will use to distinguish the phase stability of
399 bimetallic nanoparticles with various shapes and atomic
400 arrangements.
401 3.1. Comparison to Literature Structures and Ab Initio
402 Calculations. We first validated our ML models by a
403 comparison with published ab initio calculations; additional
404 validation calculations are reported in Sections 3.2 and 3.4, and
405 comparisons to literature-reported structures and trends are
406 contained in Sections 3.2, 3.3, and 3.4.
407 Gruner et al. used first-principles calculations to compare the
408 energetics of several structural motifs of Co−Pt alloy nano-
409 particles in reference to an L10 ordered cuboctahedron.53 We
410 created a number of 561-atom nanoparticles for Pt296Co265 that
411 are either identical or close in atomic arrangements to those used
412 in Gruner’s ab initio calculations since the exact structure was
413 not always reported. Different randomness should play a
414 negligible role in the energetics because only a small fraction
415 of atoms are randomly positioned. The nanoparticles included
416 an L10 ordered cuboctahedron, a disordered icosahedron, an
417 icosahedron with alternating Co and Pt shells, and a core−shell
418 icosahedron with a Co-rich second shell. We relaxed these
419 structures with the force model and then we calculated the
420 energetics with the energy model. The comparison between ML
421 predictions and ab initio calculations by Gruner et al. is shown in

f2 422 Figure 2. We note that the work of Gruner et al. used a cutoff
423 (268 eV) that was smaller than the one (350 eV) we used for
424 DFT calculations on atomic chunks, which may account for
425 some discrepancy to the literature. One can see a very good
426 agreement for both cuboctahedron and icosahedron nano-
427 particles, and the overall order for all structures presented is
428 exactly captured by the ML models, with the mean ensemble
429 prediction agreeing very well and the parity line within the error
430 bars.
431 In addition, we created a 147-atom Pt icosahedron and
432 cuboctahedron, relaxed it with the ML model, and compared the
433 absolute energy difference to that obtained by the DFT
434 calculations we performed in the GPAW calculator. The DFT
435 and ML-predicted energies for both structures are presented in
436 Figure S4 of Supporting Information. Although the exact
437 energetics for each shape can differ by 13.6−27.2 meV/atom
438 between ML predictions and DFT calculations, the relative
439 energy difference between those two shapes is much closer; Pt
440 icosahedron is more stable than Pt cuboctahedron by 7 meV/
441 atom using ML models versus 8.6 meV/atom using DFT
442 calculations. This suggests that the ML models are able to
443 distinguish the thermodynamic stability across various shapes of

444nanoparticles and different atomic arrangements for a given
445shape.
4463.2. Energy Convex Hull of Co−Pt Surfaces and
447Nanoparticles. We next turn to studying the relative stability
448of alloyed structures by using these potentials to construct
449“convex hulls” that plot the alloy-formation energy versus
450composition. Negative energies indicate that the alloy is stable
451relative to the pure components.
452We began by examining the formation energy of two ordered
453bulk alloys, PtCo and Pt3Co. The formation energy for PtCo and
454Pt3Co are −0.24 and −0.14 eV/atom, respectively, close to
455values by experiments and empirical potentials.11,54 As a
456comparison, the DFT-calculated formation energies for PtCo
457and Pt3Co are −0.10 and −0.06 eV/atom, respectively. This
458indicates that Co and Pt atoms have a strong tendency of being
459mixed.
460To gain insights into the atomic arrangement near a Co−Pt
461surface, we built energy convex hulls for 5-layer Co−Pt fcc(100)
462and fcc(111) surfaces using the neural-network-enhanced
463 f3genetic algorithm. Figure 3a shows the energy convex hull for
464fcc(100), where xCo represents the mole fraction of the Co
465atoms. We extracted the fittest fcc(100) surface (that with the
466lowest formation energy), and its composition is around xCo =
4670.4. A side view of the global minima, shown in the figure,
468implies that it is an L10 ordered structure, forming alternating Pt
469and Co layers, with the outermost layer being Pt. Although the
470convex hull of fcc(100) is not symmetric, we can infer that this
471lack of symmetry is constrained by the number of layers (5), and
472if it were increased, it would approach a more symmetric form.
473The structure at xCo = 0.2 is close to L12 ordered, which suggests
474that the atomic arrangement in a fcc(100) surface is inclined to
475form an ordered structure. We anticipate that compositions of
476stable structures may change if we increase the thickness of the
477surface where bulk contributions become more dominant (e.g.,
478global minima closer to 0.5 for an infinitely thick surface). Yet
479atomic arrangement patterns, in particular near surfaces, should
480hold for thicker surfaces. We will see this to be the case when we
481examine large nanoparticles.

Figure 2. Energetics of Pt296Co265 nanoparticles in various shapes in
reference to the L10 ordered cuboctahedron: ML predictions versus
DFT calculations by Gruner et al.53 The DFT calculations used a
smaller cutoff (268 eV) compared to 350 eV used to obtain the training
data for the ML models. The error bar represents the ensemble
halfspread as defined by Peterson et al.35
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482 In comparison, the convex hull of the fcc(111) surface alloys is
483 much smoother, representing more flexibility in atomic
484 arrangements in this more closely packed facet. In terms of
485 the fittest configuration Pt41Co39, the general trend still holds
486 that Pt tends to segregate at the surface while being depleted at
487 the subsurface. A small amount of Co shows up at the surface,
488 although Co−Co direct connections are not present. In brief,
489 the main features of atomic arrangements for both fcc(100) and
490 fcc(111) surfaces are a surface Pt layer and a subsurface Co layer.
491 Besides, the fcc(100) surface is more likely to form an ordered
492 structure than the fcc(111) surface.
493 Next, we turned to building the convex hull of a 147-atom

f4 494 Co−Pt icosahedron. Figure 4 shows the formation energy for
495 this system as a function of the mole fractions of Co atoms,
496 centered on the Pt-rich region where the global minimum lies.
497 The convex hull from a DFT-based study conducted by Noh et
498 al.55 is also included for comparison. The trend of formation

499energy versus composition demonstrates that the ML-predicted
500convex hull agrees very well with the ab initio results. The
501prediction discrepancy of the formation energies is less than 0.03
502eV/atom across the composition range, as shown in Figure 4.
503The discrepancy could likely be reduced by adding additional
504atomic chunks extracted from uncertain 147-atom Co−Pt
505icosahedra�here, we did not seek such an improvement since
506we considered the prediction accuracy to be satisfactory. On the
507Pt-rich side (increasing from xCo = 0), the formation energy
508rapidly decreases with the addition of Co. In contrast, there
509exists a wide flat region (0.3 ≤ xCo ≤ 0.5) where either the
510addition or removal of Co atoms barely changes the formation
511energy.
512The most significant feature (also reported by Noh et al.)
513along the convex hull is the formation of a Pt skin on the surface
514with a Co-rich layer directly below the Pt skin. Among the eight
515Co−Pt icosahedra along the hull in Figure 4, seven structures are
516covered by a full Pt skin, with the exception being the one with
517the lowest overall platinum composition (xCo = 0.44), where the
518skin contains 78% Pt. The average Co composition of the second
519shell is 74%.
520It is well-known in fuel-cell catalysis that Pt−Co alloyed
521catalysts exhibit a platinum skin, which is generally considered to
522be formed by dealloying of the cobalt under electrochemical
523conditions, due to the difference in electrodeposition potential
524between Co and Pt. The Pt skin is contracted relative to what
525would be found on a pure-Pt particle, which has been concluded
526to increase the catalyst’s activity. These results show that Pt is
527also thermodynamically most stable on the surface (for a fixed
528Pt/Co composition). This may suggest a greater long-term
529stability to these catalysts than if the skin layer were present due
530to cobalt dissolution alone.
531On the left side of the convex hull, the ML model identifies a
532stable structure with the composition Pt83Co64, where Co atoms
533on the surface occupy the center of fcc(111) surfaces. In this

Figure 3. Energy convex hulls of fcc(100) (a) and fcc(111) (b) surface PtCo alloys as a function of Co compositions. Solid squares are the stable
structures, and circles refer to unstable structures. Top and side views of the fittest configurations are shown on the right.

Figure 4. Energy convex hull of a 147-atom Co/Pt Ih as a function of
Co compositions. Solid squares are the stable structures found by ML
models, and circles refer to unstable structures of ML predictions. Up-
triangles refer to the stable structures excerpted from Noh et al.55
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534 same region, Noh et al.’s calculations show a structure with the
535 composition Pt80Co67, where Co atoms on the surface sit at the
536 corners. To validate whether the center occupancy represents a
537 stable atomic arrangement, we constructed icosahedron
538 structures with stoichiometry Pt80Co67 where surface Co
539 atoms occupy both types of sites and compared the energies
540 with both DFT and ML calculators. In both cases, the corner
541 occupancy was predicted to be more favorable, with DFT
542 energies showing a difference of ∼14 meV/atom, which
543 indicates that the terrace center occupancy is a low-energy
544 state as well. However, this configuration was not captured in the
545 DFT calculations by Noh et al.55 The configurations of two
546 types of Pt80Co67, together with their ML and DFT energies, are
547 provided in Figure S5 of Supporting Information. Since both
548 calculators correctly show the corner site to have lower energy,
549 this indicates that the two procedures captured different minima
550 structures purely by the stochasticity of the genetic algorithm
551 itself and not due to an issue with the ML fidelity.
552 3.3. Crossovers among Morphology in Pt and Co−Pt
553 Nanoparticles. 3.3.1. Platinum Particles. In this section, we
554 aim to provide physical insights into the distinct crossover
555 behavior of Co−Pt nanoparticles. We first focus on pure Pt
556 nanoparticles, where the crossover between different shapes has
557 been extensively investigated based on well-parametrized
558 empirical potentials.22,23,56 The energies of each structure in
559 such studies were fit to an empirical thermodynamic model,
560 dividing the total potential energy (U) for a nanoparticle of a
561 specific shape into contributions from volume, surface, and
562 edges

= + +U
N

A BN CN1/3 2/3

563 (2)

564 where N is the total number of atoms, and A, B, and C are
565 parameters corresponding to the volume, surface, and edge
566 contributions, respectively. These parameters are unique to each
567 nanoparticle shape. As N increases, the edge contribution
568 becomes less important, and we will show that this term can be
569 dropped in the size range of interest.
570 Discrepancy exists in the literature, even for the crossover of
571 pure Pt nanoparticles. For example, Uppenbrink and Wales
572 concluded that the crossover between icosahedron and
573 decahedron occurs at around 393 atoms for both pure Pt and
574 pure Au nanoparticles, a decahedron is found in a narrow range
575 of sizes and decahedron becomes less stable than cuboctahedron
576 at a size of 550 atoms.22 In contrast, Baletto et al., using a
577 different empirical potential and a metric defined as bulk
578 modulus divided by cohesive energy, concluded that the
579 crossover between icosahedron and decahedron should occur
580 in a small size (<100 atoms), decahedra can exist in a wider range
581 of sizes and truncated octahedron becomes dominant at around
582 6500 atoms.23 For simulations on small-size Pt nanoparticles,
583 either cuboctahedron or regular truncated octahedron has been
584 used in previous works.14,18,57 Although controlling exper-
585 imental conditions can open up possibilities for a variety of
586 shapes of pure Pt nanoparticles, it is well acknowledged that
587 multiply twinned structures rarely form.16

588 We used the well-validated ML models to predict energetics
589 of typical structure motifs of Pt nanoparticles across a size range
590 of 201 to 6266 atoms, including seven cuboctahedron, five
591 truncated octahedron, and seven icosahedron nanoparticles;
592 decahedron is not considered because it is usually only an
593 intermediate state and it has been rarely reported in experi-
594 ments.16,58 We then fit the predicted energetics of each structure

595type as a function ofN to a simplified version of eq 2 in which we
596dropped the edge term (CN−2/3).
597 f5The results are shown in Figure 5, which shows per-atom
598energy versus N−1/3. (Results including edge terms are included

599in Figure S6 of Supporting Information). First, we note that the
600data points show little significant curvature about the straight
601lines, which implies that the neglect of edge terms is justified for
602this range of particle size. From the fit parameters displayed on
603the plot, one can see that volume contributions of single-crystal
604cuboctahedron and truncated octahedron are almost identical,
605while that of icosahedron is larger. We attribute this to the
606distorted internal structure of the icosahedron. As we expect, the
607surface contribution is always positive, with the order of
608cuboctahedron > icosahedron > truncated octahedron. It is
609reasonable that the surface contribution of the cuboctahedron is
610larger than that of the icosahedron because more fcc(100) facets
611are exposed on the cuboctahedron surface compared to all
612fcc(111) facets on the icosahedron surface. It was also found that
613the surface contribution of truncated octahedron is lower than
614icosahedron, probably because the distorted internal structure of
615icosahedron also has a profound impact on its surface energy
616(i.e., the icosahedron surface may be distorted as well).
617This analysis shows the truncated octahedron to be the most
618stable Pt shape across this size range (roughly 200−7000
619atoms). To the best of our knowledge, it is the first time that the
620unique high stability of truncated octahedron is identified and
621attributed to the lower surface energy contribution compared to
622that in icosahedra, and it explains the observation that truncated
623octahedron is the structure of pure Pt nanoparticles most
624frequently found in experiments.16,18 A crossover exists between
625cuboctahedron and icosahedron, which is estimated to be atN =
626538, in agreement with the result of Uppenbrink and Wales.22

627However, these lines are nearly overlapping, which presumably
628makes the precise location of the crossover very sensitive to the
629fidelity of the interatomic potential used, perhaps explaining the
630large variation seen in the literature for the location of this
631crossover.
6323.3.2. Bimetallic Particles. Using a similar logic, we extended
633this analysis to the crossover in Co−Pt nanoparticles. Section
6343.2 concludes that the most outstanding feature for Co−Pt
635nanoparticles is an outermost Pt skin with a Co-rich second
636shell. Thus, for truncated octahedron and icosahedron, we
637created Co−Pt structure motifs enforcing the above feature,
638with the remaining Co atoms randomly placed in the core. As a

Figure 5. Energies of relaxed structure motifs of Pt nanoparticles,
plotted as per-atom energy (U/N) versus N−1/3. COh, TOh, and Ih
represent cuboctahedron, truncated octahedron, and icosahedron,
respectively.
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639 comparison, we also included a cuboctahedron with an L10-
640 ordered core surrounded by pure Pt skin. To account for the Co
641 composition effect on the energetics, we introduced a revised
642 empirical model, as shown in the following equations. In the
643 interest of having fewer parameters, we assume edge sites can be
644 neglected (as we justified earlier for pure Pt particles in this size
645 range). Our intention is to use the simplest model that captures
646 the trends of interest, to maximize interpretability and minimize
647 overfitting.

= + ·U
N

A x B x N( ) ( )Co Co
1/3

648 (3)

649 where

= + +A x x A x A x x( ) (1 ) (1 )Co Co Co Co Pt Co Co650 (4)

651 and

=B x B x( ) (1 )Co 0 Co652 (5)

653 Here,APt and B0 are respective volume and surface contributions
654 found from pure Pt nanoparticle results. ACo is the volume
655 contribution in a pure Co nanoparticle; this was determined
656 from a bulk calculation. α describes the enthalpy of mixing, and κ

657describes the reduction of the Pt surface energy due to alloying
658the bulk with Co; both of these were taken as free variables fit to
659the Co−Pt particles in question. The ML-calculated energetics
660for the cuboctahedron, icosahedron, and truncated octahedron
661 f6are shown in Figure 6a−c, and the fitted results for each shape at
662each Co composition are represented by a family of dashed lines.
663The fitted results are summarized in Figure 6d using a Co
664composition of 35%, which falls within the range of the
665investigated compositions. Co alloying lowers both volume and
666surface contributions, suggesting a strong tendency of mixing Co
667and Pt atoms; however, the dependencies differ with Co−Pt
668nanoparticle shapes. The fitted enthalpy of mixing and reduction
669in Pt surface contribution due to Co alloying for each shape of
670Co−Pt nanoparticle, together with fitted volume and surface
671contributions in a pure Pt nanoparticle and volume contribution
672 t1of Co from a bulk calculation, are listed in Table 1.
673Over most of the size range, the truncated octahedron is the
674most stable shape, as it is for pure Pt particles. We can deduce, by
675extrapolation, that at small particle sizes, (<333 atoms)
676icosahedron becomes more stable. We infer that this is because
677the addition of Co in the core switches the order of the surface
678contribution coefficients for alloyed truncated octahedron

Figure 6. Energies of relaxed structure motifs of Co−Pt nanoparticles, plotted as per-atom energy (U/N) versus N−1/3. COh, TOh and Ih represent
cuboctahedron, truncated octahedron, and icosahedron, respectively. (a) Cuboctahedron, (b) icosahedron, (c) truncated octahedron, and (d) fitted
results using eq 3, at a Co composition of 35%. The Co compositions are indicated by texts next to each data point. The fitted family of lines are
indicated by dash lines; each line represents the fit for the fixed Co composition indicated by the nearest point. Cross-sectional view of the structure
motif for Co−Pt nanoparticles are included as an inlet. The number of atoms are presented in the twin axis at the top.

Table 1. Fitted Enthalpy of Mixing (α) and Reduction of Pt Surface Energy Due to Co Alloying (κ) for Each Shape of Co−Pt
Nanoparticlesa

α [eV/atom] κ [eV/atom4/3] APt [eV/atom] B0 [eV/atom4/3] ACo [eV/atom]

cuboctahedron −0.913 0.485 −6.251 3.480 −7.528
icosahedron −0.850 0.924 −6.235 3.348 −7.528
truncated octahedron −0.966 0.624 −6.249 3.213 −7.528

aFitted volume (APt) and surface contributions (B0) in a pure Pt nanoparticle are also listed. The volume contribution of Co (ACo) obtained from a
bulk calculation is shown as well.
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679 (2.512) and icosahedron (2.266) compared to that for pure Pt
680 truncated octahedron (3.213) and icosahedron (3.348), adding
681 that the order of volume contributions remains unchanged for
682 alloyed truncated octahedron (−6.916) and icosahedron
683 (−6.881) versus that in pure Pt truncated octahedron
684 (−6.249) and icosahedron (−6.235), as shown in Figures 5
685 and 6d. This can be explained by the strain/stress release on the
686 distorted surface of icosahedron when a smaller element such as
687 Co is introduced into the subsurface and core. Specifically, we
688 define the average local strain for a surface atom i as

=
M

d d

d
1

i
j

ij

NN

Pt

Pt
i689 (6)

690 where dij is the interatomic distance between atoms i and j, dPt is
691 the DFT-calculated lattice constant for an optimized bulk Pt
692 (3.936 Å), NNi represents the summation over the nearest
693 surface neighbors of atom i, and M is the number of surface
694 neighbors. We calculated the average local strains on the terrace
695 fcc(111) sites for cuboctahedron and icosahedron particles in
696 sizes from 561 to 5083 atoms with and without Co alloying and

t2 697 report the result in Table 2. As we can see, the surface atoms on

698 the cuboctahedron start in compressive strain for pure Pt, and
699 alloying with Co only further compresses the surface atoms. In
700 contrast, the icosahedron starts in tensile strain in the pure
701 system, so alloying with Co allows strain relief and crosses into
702 the compressive regime. As a result, the absolute strain increases
703 with alloying for cuboctahedron and decreases for icosahedron,
704 confirming stress release in icosahedron nanoparticles upon Co
705 alloying.
706 If we increase the Co composition to 40%, we found that the
707 crossover between icosahedron and truncated octahedron shifts
708 to a larger size of 570 atoms, further extending the range of
709 stability for icosahedron. Of course, the crossover may also

710depend on the surrounding environment and surface reactions,
711which are not considered in this study. Here we mainly aim to
712provide the physical insights for differences in crossover for Pt
713and Co−Pt nanoparticles, and the structures used to analyze the
714crossover for Co−Pt alloy systems can probably be further
715optimized. The method presented here can readily be extended.
7163.4. Order−Disorder Phase Transition in Co−Pt
717Truncated Octahedrons. Before discussing the order−
718disorder phase transition, we need to investigate the stable
719structure of a Co−Pt nanoparticle. Two questions should be
720answered in this regard�first, is the stable structure ordered?
721Second, if it is ordered, how? The truncated octahedron
722structure was chosen for this analysis based on the crossover
723analysis, as it is the most thermodynamically stable shape for
724large sizes and is also the structure most commonly reported in
725experiments.4,16,59 First, we performed Metropolis simulations
726at a temperature of 300 K on particles with the composition
727Pt300Co286. We picked a structure after more than 58,600 steps,
728equivalent to 100 swaps per atom on average, and we treated it as
729the putative global minima. We relaxed the structure using the
730force model.
731We compared the energy of this structure with its fully
732ordered L10 counterpart using both our ML energy model and
733DFT, using the highly scalable SPARC code. To the best of our
734knowledge, this DFT validation calculation on a spin-polarized
735586-atom structure represents the largest Co−Pt nanoparticle
736that has been directly validated by a full ab initio method. The
737shell-by-shell atomic arrangements of both structures are shown
738 f7in Figure 7. For the ML-found minimum, an alternating
739preference for Pt and Co atoms can be seen starting with a Pt-
740rich surface with the subsurface layer fully occupied by Co. Co
741atoms on the surface of this structure are more likely to occupy
742terrace fcc(111) sites and to connect with Pt atoms on the
743surface, consistent with the previous findings in the genetic
744algorithm study. This observation is validated by aforemen-
745tioned SPARC DFT calculations to prove that the L10 ordered
746Co−Pt truncated octahedron alloy is not the most stable
747structure but ordered in a different pattern as shown in the
748configurations in Figure 7a. Both the SPARC DFT calculations
749and the ML-calculations conclude the Metropolis-derived
750structure found by ML models is lower in energy than the L10
751structure, with ML predicting 0.097 eV/atom and DFT
752calculating 0.057 eV/atom. The DFT-maximum atomic forces
753for the ML-found minimum and L10 ordered structures are 0.42

Table 2. Strain Levels (Engineering Strain, Percent) for
Particles in Sizes of 561, 923, 1415, 2057, 2869, 3871, and
5083 Atoms with and without Co Alloyinga

cuboctahedron icosahedron

pure Pt (−1.321 ± 0.176)% (+2.333 ± 0.215)%
alloyed (−3.116 ± 0.068)% (−1.244 ± 0.190)%

aThe ± indicates the standard deviation across particle sizes.

Figure 7. Composition depth profile of a truncated octahedron Pt300Co286: the putative global minima found by ML models (a), and the fully L10
ordered Co−Pt nanoparticle alloy (b). Atomic arrangement at each shell and the total number of atoms are provided at the top.
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754 and 0.27 eV/Å, respectively, which are within the ML-predicted
755 maximum atomic uncertainty of forces, 0.43 and 0.42 eV/Å,
756 respectively. Since the Metropolis-found structure has a larger
757 maximum force, we expect its energy may decrease more if it
758 were reoptimized at the DFT level; this would likely have the
759 effect of reducing the energy differences between the ML and
760 DFT estimates. (Performing full relaxations at the DFT level,
761 even with a highly scalable code like SPARC, would be extremely
762 costly due to the scaling of DFT, the spin polarization, and the
763 large number of degrees of freedom in the system). We
764 performed a similar study on the smaller Co−Pt-truncated
765 octahedron Pt96Co105, and the comparison between ML
766 predicted putative minima against the L10 one is included in
767 Figure S7 of Supporting Information.
768 We also performed Metropolis simulations at a temperature of
769 500 K on a much larger nanoparticle with 6266 atoms (∼6 nm).
770 We started with a fully L10 ordered structure, and we wanted to
771 see where the thermodynamic fluctuations lead the structure.
772 We took out a structure after 330,000 steps, showing the

f8 773 configuration for each shell in Figure 8. It is clear that the first

774 four outermost shells change to a distinct orderliness, whereas
775 we find an almost unchanged L10-like structure going from the
776 fifth shell to the center of the truncated octahedron.
777 Interestingly, the optimized structure for a truncated octahedron
778 with nearly equal compositions of Pt and Co follows a pattern of
779 atomic arrangement as

···Pt Co L1 (Pt Co) L1 (PtCo ) L1 (PtCo)

L1 (PtCo)
2 3 2 3 0

0

780 So far, we can conclude that the optimal particle for a
781 truncated octahedron with equal compositions displays
782 concentric Pt and Co shells at the outermost two shells, then
783 respective Pt-rich and Co-rich L12 ordered at the third and
784 fourth shell, and fully L10 ordered close to the center.
785 To find the temperature for the order−disorder phase
786 transition, we carried out a series of Metropolis simulations at
787 various temperatures. We studied the order−disorder phase
788 transition for two structures; one is a 500-atom bulk cell
789 Pt250Co250 and the other is a 1289-atom truncated octahedron
790 Pt632Co657. We employed a long-range order (LRO) parameter

791(Φ) introduced by Cowley60 to describe the order−disorder
792transition, and it takes the form of

= { }

= | | + | |
{ }

p p

max ( )

where 1/2 1/2

i x y z
i

i i i

, ,

A, B, 793(7)

794where pA,i and pB,i are the occupation probabilities on each
795sublattice of the L10 phase evaluated in an ordering direction i.
796As the stable structure of truncated octahedron found at 300 K is
797similar to that of the aforementioned 6266-atom structure, only
798exhibiting L10 ordering from the fifth shell to the center, we only
799consider those L10 ordered shells for the order−disorder
800transition in the 3.3 nm truncated octahedron nanoparticle
801 f9Pt632Co657. Figure 9 shows the order parameters calculated at

802various temperatures by Metropolis simulations on a bulk cell
803and a nanoparticle. Although there is not a sharp phase
804transition, we can see that the loss of order occurs in the vicinity
805of the experimentally observed transition temperature of ∼850
806°C,61,62 although our calculations appear to predict it to be
807slightly higher at a temperature of ∼1050 °C. This deviation is
808similar to what has been found by well-validated empirical
809interatomic potentials.14 For the 1289-atom truncated octahe-
810dron, there exists a much smoother transition region where the
811transition temperature is found to be around 900 °C, which is
812150 °C lower than that of a bulk. The size effect agrees well with
813experimental observations and simulations in the work of
814Alloyeau et al.,14 in which order−disorder phase transition
815temperature is lowered by at least 175 °C. This phenomenon
816can be understood by the surface induced disordering due to the
817reduced coordination hence an overall lowered order−disorder
818transition temperature.12

4. CONCLUSIONS
819Based on an NFT approach, robust neural network models have
820been developed for Co−Pt nanoparticles of up to several
821thousand atoms in size, using training sets containing images
822with no more than 168 atoms/image. This work also
823demonstrates that the NFT approach is applicable to multiele-
824ment magnetic nanoparticles. The resulting models can readily
825be improved by addressing uncertain local chemical environ-

Figure 8.Depth profile of compositions and configurations at each shell
for 6 nm Co3102Pt3164 optimized by Metropolis Monte Carlo
simulations.

Figure 9. Long-range order parameter for a 500-atom bulk cell and a
1289-atom 3.3 nm truncated octahedron calculated by Metropolis
simulations at various temperatures. TOh is short for a truncated
octahedron.
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826 ments when necessary. By pairing these models with genetic
827 algorithms and Metropolis Monte Carlo simulations, we have
828 presented a thorough study of the stable structures of Co−Pt
829 nanoparticles. We summarize the key findings below, which not
830 only refine existing understandings of the thermodynamic
831 stability of Co−Pt nanoparticles but also offer guidelines for the
832 synthesis of nanoparticle catalysts in experiments. The
833 experimental guidelines include, but are not limited to, using
834 temperature to control the orderliness of the nanoparticle and
835 tuning surface energy with a capping agent targeting desired
836 nanoparticle shapes.
837 1. Co−Pt nanoparticles exhibit a strong tendency to form
838 alternating layers near the surface, with a platinum-rich
839 skin and a cobalt-rich underlayer. This was seen in many
840 systems throughout this study, and the concentric nature
841 continued through the fourth shell in the case of a 6 nm
842 (6266-atom) structure.
843 2. Co−Pt fcc(100) surfaces also exhibit a strong tendency to
844 form an L10 ordered structure featuring alternating Pt and
845 Co layers. Co−Pt fcc(111) surfaces show more flexibility
846 of the atomic arrangement while the major feature is also
847 the alternating layers.
848 3. The truncated octahedron is the most stable shape for Pt
849 nanoparticles of moderate to large sizes (200−7000
850 atoms), due to its low surface and volume energies. This
851 explains its frequent appearance in experiments. The
852 stability of icosahedron and cuboctahedron particles is
853 always less, but these two shapes exhibit a crossover in
854 stability at a size of ∼500 atoms.
855 4. The truncated octahedron is the most stable shape for
856 large Co−Pt nanoparticles, while the icosahedron is more
857 stable for smaller nanoparticles. An composition-depend-
858 ent empirical model was introduced to study the
859 crossover among structural motifs in Co−Pt nano-
860 particles. The addition of Co improves the stability of
861 icosahedron, leading to a crossover between icosahedron
862 and truncated octahedron at the size of ∼333 atoms for a
863 given Co composition of 35%. It can be rationalized by the
864 significant stress release on the distorted fcc(111) surfaces
865 of icosahedron when a smaller element is introduced in
866 the core. The crossover moves to a larger size when more
867 Co atoms are added.
868 5. Metropolis simulations reveal that the most stable atomic
869 arrangement of a Co−Pt truncated octahedron with
870 nearly equal Co and Pt compositions is not fully L10
871 ordered, as often found by well-parametrized empirical
872 potentials. Instead, it displays a more complex pattern
873 going from the outermost shell to the center of truncated
874 octahedron, which is confirmed by large-scale DFT
875 calculations on SPARC. The outermost shell is Pt
876 segregated, followed by a Pt depleted second shell. The
877 third and fourth shells are L12-like structures rich in Pt
878 and Co, respectively. Deeper shells all exhibit L10-like
879 atomic arrangement.
880 6. The order−disorder phase transition for a bulk and
881 nanoparticle has been studied based on a long-range order
882 parameter. Nanoparticles show a lower transition temper-
883 ature and a much smoother transition compared to a bulk
884 Co−Pt alloy.
885 7. The energy convex hull for a 147-atom Co−Pt
886 icosahedron constructed by neural network models is
887 quantitatively accurate compared to brute-force ab initio

888calculations, and a new low-energy atomic arrangement
889for Pt80Co67 is identified.

890■ ASSOCIATED CONTENT
891Data Availability Statement
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