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ABSTRACT
A challenge of atomistic machine-learning (ML) methods is ensuring that the training data are suitable for the system being simulated, which
is particularly challenging for systems with large numbers of atoms. Most atomistic ML approaches rely on the nearsightedness principle (“all
chemistry is local”), using information about the position of an atom’s neighbors to predict a per-atom energy. In this work, we develop a
framework that exploits the nearsighted nature of ML models to systematically produce an appropriate training set for large structures. We
use a per-atom uncertainty estimate to identify the most uncertain atoms and extract chunks centered around these atoms. It is crucial that
these small chunks are both large enough to satisfy the ML’s nearsighted principle (that is, filling the cutoff radius) and are large enough to
be converged with respect to the electronic structure calculation. We present data indicating when the electronic structure calculations are
converged with respect to the structure size, which fundamentally limits the accuracy of any nearsighted ML calculator. These new atomic
chunks are calculated in electronic structures, and crucially, only a single force—that of the central atom—is added to the growing train-
ing set, preventing the noisy and irrelevant information from the piece’s boundary from interfering with ML training. The resulting ML
potentials are robust, despite requiring single-point calculations on only small reference structures and never seeing large training structures.
We demonstrated our approach via structure optimization of a 260-atom structure and extended the approach to clusters with up to 1415
atoms.
Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0079314

I. INTRODUCTION

Reliable atomistic simulations depend on the accuracy of the
ab initio methods used. In practice, Kohn–Sham density functional
theory (DFT) is probably the most widely used method for electronic
structure calculations. DFT calculations scale as approximately
O(N3

),1 where N is an indicator of the system scale, such as the
number of atoms, the number of electrons, or the number of basis
functions. Higher-accuracy methods also exist but with less favor-
able computational scaling; methods also exist with more favorable
scaling than DFT, but trade-off calculation accuracy. All widely used
electronic-structure methods exist on such a Pareto frontier, where

one chooses the appropriate trade-off between accuracy and speed
for their particular application.

In recent years, atomistic machine learning (ML) has demon-
strated its capability in fitting potential-energy surfaces (PES’s)
created by electronic structure codes, while reducing the computa-
tional cost by orders of magnitude.2–5 Typical ML codes can scale
with O(N1

),6 and, in principle, their accuracy can be made to
mirror that of the parent calculator from which they learn. The
performance of ML potentials strongly depends on both the ML
method and how we encode atomic configurations, i.e., the descrip-
tors used to generate features for the ML method.7 Many ML
algorithms have proven effective and efficient in fitting PES’s,
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including the Gaussian process,4 kernel ridge regression,5,8 and
neural networks.2,3,9–11 A wide variety of descriptors have been
established, such as smooth overlap of atomic positions,12 Coulomb
matrices,5 atom-centered symmetry functions,13 and Zernike
descriptors.11 However, the accuracy and range of applicability
are always limited by the training data chosen, which come from
electronic structure calculations.

In principle, ML methods’ favorable scaling can allow such
models to make predictions on large systems that would be unaf-
fordable to the parent electronic structure calculator. However, this
also can create a problem, as it is impractical to create training
data at sizes that are comparable to the machine-learning predic-
tions. Instead, one typically needs to rely on smaller-sized training
structures to create robust ML models that can be used to make
predictions for these larger structures. However, it is often not
straightforward to understand what small-scale images need to be
included for large-scale model predictions, and in this work, we pro-
vide a systematic framework to enable training-data collection, in an
active-learning scheme.

Normally, a ML model needs a large amount of data from high-
level ab initio calculations. Once the model is trained on the data,
it can give accurate predictions in regions where there are abun-
dant data, while sometimes performing catastrophically in regions
where training data are scarce. Active learning schemes are recently
receiving much attention to minimize the number of expensive
ab initio calculations, focusing instead on providing the “right”
training data for the prediction at hand.14–20 The key to a successful
active learning scheme is a proper choice of the query strategy—such
as an uncertainty estimate21 or a strategic check of key results in
a predictor–corrector fashion14—used to detect when the potential
moves away from familiar regions. Much prior work motivates the
current study. A “learn on the fly” scheme was formulated by Csányi
et al.22 for improving classical models: it takes a predictor–corrector-
style force fitting on atoms in the quantum region, and forces acting
on separate atoms can be computed independently by carving out a
small cluster centered on a given atom. A query-by-bagging method
was suggested by Artrith and Behler:23 if the predictions by two
neural network models differ on a given configuration by more
than a threshold, it needs to be calculated at the ab initio level
and added to the database. Peterson et al.21 demonstrated that the
halfspread of a bootstrap ensemble offers a reliable upper bound
for the uncertainty of ML predictions and showed that these tech-
niques can lead to per-atom uncertainty, isolating exactly what
features in a structure lead the ML model to fail. Bernstein et al.
suggested a self-guided approach for structure search: a combina-
tion of Boltzmann-probability sampling and the leverage-score CUR
algorithm is employed to select the few most relevant and diverse
structures at each active learning step.17 The CUR algorithm is a
dimensional reduction technique that is based on interpretable low-
rank matrix decompositions, as it selects actual colomns and/or rows
of the data matrix that exert large statistical influences.24 Zhang et al.
proposed a procedure that used the maximum standard deviation of
the predicted atomic forces as the model deviation indicator to speed
up the search.18

Although it is well-acknowledged that ML models enable long-
time and large-scale simulations, validation of ML predictions with-
out performing expensive ab initio calculations on large systems
is non-trivial and has received comparatively little investigation.

Moreover, if and when a prediction on a large system is found to
be unreliable, it is challenging to sample small relevant reference
structures, which can be used to extend the reference database and
improve the ML model.

In this work, we present a robust active-learning approach
for generating reference databases right from the target structure,
exploring the configuration space with minimal effort. Briefly, our
approach relies on a per-atom uncertainty prediction to identify
which regions of a target structure are lacking in training data.
It then extracts “chunks” centered around these uncertain atoms,
which are calculated in the parent electronic-structure calculator.
Importantly, as these chunks are added to the ML calculator’s
training set, only the force on the central atom is included in
the loss function, avoiding noisy and irrelevent information from
the surrounding atoms. The approach we present can be applied
to any finite-ranged ML potential given where atomic forces are
trained, and a per-atom uncertainty estimate can be made. We
examined the efficacy and efficiency of this approach via a structure-
optimization calculation, for systems ranging in size from 260 to
1415 atoms.

II. THEORETICAL APPROACH
A “nearsightedness” principle was put forward by Kohn in

the context of electronic structure calculations,25,26 suggesting that
in typical atomic systems, all chemistry is local. That is, isolated
perturbations in the electronic structure do not affect the local prop-
erties, such as atomic forces, of far-away atoms. Kohn attributed this
phenomenon to destructive interference among wave functions.
This principle may be violated if long-range charge transfer occurs
in the system; for example, interactions with atoms outside the local
region have been observed in the study of adsorption of metal clus-
ters on a doped substrate, where long-range charge transfer between
the dopant in the substrate and adsorbed metal atoms is crucial in
determining the global structure.27

Most atomistic ML schemes, such as the seminal
Behler–Parrinello scheme,2 rely on an ansatz that the poten-
tial energy E can be decomposed into atomic contributions, i.e.,
E = ∑i Ei. Each atomic contribution Ei comes from the atom i
interacting with all neighboring atoms j within a given cutoff
radius Rc; that is, Ei = Ei({R⃗ij}), where R⃗ij is the relative position
vector between atoms i and j. In this sense, such ML potentials
merely depend on local chemical environments, each of which
is represented by a chunk of atoms centered on the atom of
interest. When Kohn’s nearsightedness principle applies, we can
expect that ML models can give good representations of the
parent data. This is the intrinsic limitation for all finite-ranged ML
potentials. In this work, we aim to exploit this limitation to build
an efficient training scheme for methods that operate under this
ansatz.

In earlier work,21 we showed that it is possible not only to pre-
dict the uncertainty on an ML model’s prediction but also to identify
the specific atoms most responsible for the uncertainty. In that work,
a bootstrap ensemble of calculators provided independent estimates
of the per-atom energy and force; the variance in the calculators’ pre-
dictions could then be used as an indicator of the most uncertain
atoms in the structure. Using such an approach, we can examine a
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large structure and detect which atoms should be refined with more
training data.

In principle, just these particular atoms—along with their
neighbors within the ML cutoff radius (Rc)—would need to be
extracted from the structure due to the nearsighted nature of the
ML model. For typical values of Rc, this would result in chunks
of about 10–20 atoms, which are trivial to calculate in electronic
structure codes such as DFT. After calculation, each chunk could
be added to the training set, increasing the certainty of the predic-
tion for the central atom. However, since the neighboring atoms
will be in irrelevant environments in this small structure—for
example, they may be surrounded by vacuum in the region out-
side Rc—training to the energy of such structures would result in
adding overwhelmingly irrelevant data to the training set; that is,
roughly 10–20 times more irrelevant data (corresponding to the
10–20 surrounding atoms) than relevant data (corresponding to
the central, uncertain atom). This increases the training difficulty
and will reduce the prediction accuracy of the relevant atoms. It
would be better if the ML model’s training set could be expanded
by only data involving the central atom, and not the surrounding
atoms.

Unfortunately, there are no well-defined atomic energies in
DFT—although various schemes to decompose the total energy have
been proposed over the years. For example, Blanco et al. proposed
a scheme in which the atomic energy of an atom is ascribed to
intra- and inter-atomic components.28 Wang et al. presented an
energy-partition scheme for DFT based on local energy densities
and isolated atom charge density.29 However, it is difficult to achieve
a desired energy partition, and in most cases, the energy partition
is not unique and will not necessarily match the decomposition
implicitly found by the ML model.

A more straightforward approach is to focus on the forces on
the atoms, which are inherently per-atom quantities. Atomic forces
and the system potential energy are consistent with one another
because forces—or more specifically conservative forces—are simply
the negative derivative of potential energies with respect to atomic
positions. Therefore, it is possible to learn the potential energy
surface from only the forces, except for a constant offset, which cor-
responds to a constant of integration. So long as some images in the
training set are trained to energy, this offset will automatically be
learned by the ML algorithm, even if the remainder of the images
are trained to only forces. It is noteworthy that forces present much
more granular information of the PES, as an N-atom configura-
tion only has one potential energy, but 3N forces. Such an approach
is compatible with either a machine-learning scheme that predicts
energies and provides forces as numerical or analytical derivatives,
such as the Behler–Parrinello2 approach, or a scheme that pre-
dicts forces directly, such as those from Botu and Ramprasad30 or
Glielmo et al.31 Herein, we use the traditional Behler–Parrinello
approach.

Therefore, a plausible scheme is that whenever a new chunk is
calculated, only the (three-component) force on the central atom is
added to the training set and the rest of the output of the training
structure is discarded. Then, the performance of the ML potential
can be improved by comparing the DFT and ML forces on the atom
whose local environment is of interest.

However, there is an important property of machine-learned
forces that we should emphasize, which complicates the implication.

Although it seems counterintuitive, the locality of the force is double
the locality of the atomic energy in finite-ranged ML potentials. In
other words, forces acting on a central atom are affected by atoms
outside of Rc. This force property has also been noted in previous
studies by Artrith and Behler23 and Bernstein et al.32 It is simplest
to understand the longer-range nature of forces in the ML represen-
tation if we consider taking a numerical derivative, which converges
to the analytical derivative at small enough perturbations. That is,
if we perturb a central atom by Δx, its force in the x direction is
approximately −ΔE/Δx. Perturbing this atom will affect the per-
atom energies of atoms up to a distance of Rc away from this central
atom, but each of these atoms’ energies is a function of the atoms
within Rc of them. Therefore, the terms in the energy summation
that change include all atoms within Rc, but those atoms’ energies
are a function of atoms up to 2Rc away from the central atom.
Therefore, the force on the central atom is affected by atoms up
to a distance of 2Rc away, albeit with severely diminishing effects.
Therefore, one must be careful in balancing the cutoff radius of the
ML model with the nearsighted radius of the electronic-structure
calculations.

Based on the above, we can work out a qualitative scheme for
“nearsighted force training” (NFT) for large systems: first, we create
a minimal set of training images on which we train an ensemble of
ML calculators; next, we predict per-atom forces for our large struc-
ture and search for atoms where the models disagree; we then extract
“chunks” of the original image, ensuring atomic sizes to be con-
verged with respect to the electronic structure calculation and filling
the ML force cutoff radius of 2Rc; and finally, we add these chunks
to our training set but train only on the force on the central atom,
discarding the extraneous information. This process can be repeated
intelligently throughout the atomistic procedure, depending on the
goals of the research.

III. ALGORITHM
Depending on the researcher’s goals, there are many logical

ways to implement the scheme described above. Here, we focused
on a relatively simple scheme designed to systematically reduce the
uncertainty on a large target structure’s atomic forces, to understand
if this approach will work for scalable calculations. We will describe
how we expand this basic algorithm to integrate with a structural
relaxation in Sec. V C. In this work, we used a finite-ranged neural-
network potential as the ML model, full details of which are given in
the supplementary material.

A per-atom measure of uncertainty is crucial to the operation of
the algorithm. As in earlier work,21 we used a bootstrap resampling
algorithm to create an ensemble of trained ML calculators, which
produce a spread of predictions for each ML output. In our earlier
work, we focused on uncertainties in energy predictions, for which
it sufficed to look at the halfspread of the ensemble models’ predic-
tions. However, since each atom’s force has a component in each
(x, y, z) direction, taking a simple halfspread would produce rota-
tionally variant predictions of uncertainty, which do not match the
physics of the problem.

Instead, we developed a rotationally invariant uncertainty met-
ric for the atomic force on atom i as predicted by an M-member
ensemble,
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FIG. 1. Schematic representation of the initialization protocol and nearsighted force training iteration.
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where f( j)
i is the vector force predicted by model j and fi is the

average force vector of atom i over models of the ensemble. This
uncertainty metric is simply the standard deviation (σf ) multiplied
by a constant of 2.58 to capture 99% of the ensemble’s variation
in force prediction. It turns out to be a reliable estimate of force
prediction residuals, which we will show in the Sec. V. We term
this the “atomic uncertainty,” and define the “structure uncertainty”
as the maximum atomic uncertainty in a given structure, i.e., δ =
maxi({δi}).

Using this definition of uncertainty, the algorithm (also shown
in Fig. 1) proceeds as follows:

1. We prime the algorithm with a modest amount of initial train-
ing data, which is chosen to be reasonable for the system of
interest. For our system—a nanoparticle—we provided only
bulk structures in the initial training set; these training data
are described in Sec. IV. A bootstrap ensemble is trained to
these data.

2. We query the bootstrap ensemble for atomic uncertainties
(δi) of the structure of interest, in this case a Pt260 nanopar-
ticle, and we extract “chunks” centered on the most uncertain
atoms. Specifically, each “chunk” includes the uncertain atom
and its neighboring atoms within a given cutoff range. We
will describe how we determine an appropriate cutoff range
in Sec. V A.
The number of “chunks” to be extracted per pass is up to
the user: while only extracting one chunk per pass may be
the most efficient approach in terms of total computational
time used by the parent calculator, extracting more chunks per
pass allows one to take advantage of the embarrassingly par-
allel nature of submitting multiple electronic structures to a

computational queue simultaneously and avoids the need for
excessive re-training. In this work, we extracted 52 chunks per
pass for the DFT results and 26 for the EMT results.

3. The extracted chunks are evaluated by single-point calcula-
tions (e.g., DFT) and added into the fitting database.

4. The ensemble is re-trained. Upon re-training, only the force
on the central atom of each cluster is included in the loss func-
tion; the forces on the other atoms, as well as the total energy,
are discarded.

Return to step No. 2.
The iterative procedure runs until the maximum atomic uncer-

tainty is below a given threshold, the number of nearsighted force
training iterations is larger than the allowed number of iterations, or
the uncertainty is not improved for two consecutive iterations.

We have implemented this procedure as part of the open-
source machine-learning code Amp (the atomistic machine-learning
package),11 and scripts to replicate this work are included as the
supplementary material. In Amp, this includes algorithms for
furthest-point sampling, feature selection (using the force-
correlation or CUR approximation), and active learning within this
NFT method.

IV. TEST SYSTEM
A. Atomic system

We tested the method on a 260-atom octahedron platinum
nanoparticle, Pt260. Pt nanoparticles are well-known base materials
for electrochemical catalysis. After creating a symmetric nanoparti-
cle with a lattice constant of 3.99 Å (the DFT-optimized bulk value),
we randomly displaced each atom by a distance drawn from a nor-
mal distribution with mean 0 and standard deviation 0.1 Å. This
resulted in forces varying in magnitude from 0.1 to 5.1 eV/Å. From
this “rattled” structure, we aimed at finding its optimized structure,
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which is normally the first step in computational simulations of
reactions on nanoparticle surfaces.

B. Parent calculators
We tested with two different types of parent calculators: the

effective medium theory (EMT)33 and DFT.34 We chose these two
calculators to understand the nearsightedness effect. As EMT is a
short-range calculator, the underlying PESs can, in principle, be
exactly regressed by the finite-ranged ML potentials. In contrast,
DFT is inherently a long-range calculator; thus finite-ranged ML
potentials based on local interactions can only approximate the
underlying PESs with limited accuracy. The DFT calculations were
conducted in GPAW;35 full calculator parameters are provided in
the supplementary material.

We emphasize that the NFT approach does not require the
energy and forces of the full target structure, but for benchmarking
purposes, we performed the full-size electronic structure calcula-
tions for key structures in this work. The full-size calculations
allowed us to calculate what we term the “true forces,” which we can
use to understand how well locally-approximated forces perform. In
addition, we calculated the relaxation trajectory for Pt260 and a larger
cluster Pt309 to show the capability of the model in the extrapolation
PES regions.

C. Initial training structures
All of the initial training structures in the current work were

bulk structures—that is, periodic with no vacuum—and here we
describe how we chose to create DFT reference structures. First, we
generated an ensemble of randomized bulk structures, similar in
spirit to the ab initio random structure search approach.36,37 The
structures included two components. First, we created a unit cell
with two to four individual atoms based on a given space group. In
this study, two space groups were employed, including space group
No. 225 for a face-centered cubic (fcc) cell with four atoms and space
group No. 79 for a tetragonal cell with two atoms. We then opti-
mized the lattice constant of the bulk structure. We selected bulk
cells whose lattice constants are close to the optimized one, aiming
for sampling structures with low per-atom energies. Three structures
with four atoms/cell and seven structures with two atoms/cell were
selected for space group Nos. 225 and 79, respectively. This led to
ten structures with the first approach. Second, we periodically dou-
bled the cell in all dimensions of the optimized structure to obtain a
larger cell. The repeated fcc and tetragonal cells consist of respec-
tive 32 and 16 atoms. We randomly perturbed atomic positions,
ten times, to generate more diverse local environments, aiming for
sampling structures with high per-atom energies. In total, this gener-
ated 20 randomized structures for the second approach. From these
30 structures, we selected the 20 most diverse and representative
structures using a hierarchical farthest point sampling approach,
which has been demonstrated to efficiently sample points from PESs
in many studies.38,39 The initial ensemble of neural network models
was trained to these 20 bulk structures.

D. Machine learning models
We built a ten-member ensemble of ML models with the

bootstrap resampling approach.21 When taking ionic steps in the

structural relaxation, we used the ensemble average for both the
ML-predicted forces and energy. Note that since the average is
a linear combination of ensemble member predictions—each of
which is conservative—then the mean forces will be consistent with
the mean potential energy. Note that this would not be the case
if we had chosen the median rather than the average. Each ML
model was a Behler–Parrinello type neural network.2 A selection of
Gaussian-type symmetry functions was used as the descriptor for
local chemical environments. We added new uncertain structures
into the fitting database by using an accelerated resampling method
described by Peterson et al.21 The specific details of the machine
learning models and farthest point sampling algorithm are included
in the supplementary material.

V. RESULTS AND DISCUSSION
Here, we present the results of the implementation of this

methodology in piecewise simulating a Pt260 nanoparticle, where the
“chunk” calculations, as well as the full-size validation, all come from
DFT. DFT is inherently a long-ranged calculator that poses no lim-
its on the locality of electrons in the electronic structure. When we
first developed the method, we employed the EMT calculator with
the identical Pt260 system; since EMT is inherently a nearsighted cal-
culator (that is, it contains a built-in cutoff radius), the method can,
in principle, give an exact match. These results are available in the
supplementary material, and we do, indeed, see a nearly perfect
match when using EMT. Thus, we focus the remainder of the dis-
cussion on the DFT results, which contains the more challenging
problem and realistic use-case.

A. DFT force locality
Before implementing the nearsighted force training algorithm,

we decided to investigate the inherent locality of the forces in DFT
itself, which can help us to understand a reasonable cutoff radius
for the machine-learning model going forward. Specifically, we first
calculated the full-size Pt260 nanoparticle in DFT, which provided
what we term a “true force” on each atom. The true forces on the
central atom are shown as the horizontal lines in Fig. 2(a). We
next extracted chunks of increasing cutoff radius around this cen-
tral atom and recalculated its forces in DFT; these are also shown
in Fig. 2(a). We generally see large deviations for small cutoff radii,
which smooth out around 6–7 Å, with the largest deviations on the
largest force (which asymptotes very slowly to the true force). We
repeated this process for each of the 260 atoms in the Pt260 clus-
ter, and we show statistics of these results in Fig. 2(b). (Presumably,
the match between local and true forces could be improved with
such methods as electrostatic embedding; we did not pursue such
a strategy here.32,40) In order to achieve a good balance between
accuracy and efficiency, we chose a cutoff of 8 Å for the force local-
ity. Similar force-locality magnitudes have been reported for other
metal systems involving a variety of defects,41 while for covalent
systems, a larger force locality was reported.42 With such a cutoff,
the maximum and mean force deviations between local and true
forces are 0.24 and 0.10 eV/Å, respectively. Note that force devi-
ation/difference used in this work is defined as the magnitude of
vector difference between two forces. Since finite-ranged ML models
can only describe the local contribution, the best possible accuracy
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FIG. 2. DFT force locality analysis. (a) DFT local force components acting on one atom of Pt260 at various cutoffs. The number of atoms included in the cutoff sphere is
labeled in the y local force curve. (b) Distribution of deviations between DFT local and true forces on Pt260 at various cutoffs. The distribution of deviations on all 260 atoms
is represented by the violin shape. The 25th and 75th quartiles are indicated by the thick black line inside the violins. The median is represented by the hollow circle.

using ML models to approximate DFT true forces will be given
by the intrinsic deviations between the DFT local forces and true
forces. We emphasize that although we calculated the full-size Pt260
nanoparticle in order to assess the nearsightedness of the DFT calcu-
lator, we did not use any full-size structures in the machine-learning
training described in Sec. V B.

B. Nearsighted force training
To prime the initial ensemble model, we started with a train-

ing set of 20 small bulk structures selected using the procedure
described earlier. At each NFT iteration, we identified the 52 most
uncertain atoms in the structure and added these 52 atomic chunks
into the fitting database. As described earlier, only the force on

each central atom was added to the loss function to train the
ensemble.

The progress of the algorithm is shown in Fig. 3(a); note that,
after some time, some of the identified (most uncertain) atoms are
repeated, so the rate of addition of atomic chunks diminishes over
the number of steps. The predicted uncertainty is plotted in Fig. 3(a);
the ensemble model giving the lowest uncertainty is obtained with
six NFT steps, which shows a structure uncertainty of 0.26 eV/Å.
At this point, the ensemble model has seen the forces of 204 atoms;
that is, it has been trained on 204 atomic chunks. We compare the
ML predicted forces to the DFT local forces (that is, the central-
atom force from each chunk) in Fig. 3(b). The mean absolute errors
(MAEs) for 204 training and 56 test atomic chunks are 0.088 and
0.104 eV/Å, respectively. In a normal application of this method, one

FIG. 3. Nearsighted force training on Pt260 with reference data calculated by DFT. (a) Structure uncertainty propagation and the cumulative number of chunks during NFT
iterations. The iteration step with the lowest structure uncertainty is marked with a star and selected as the model for further analyses. (b) ML-predicted forces vs DFT local
forces. The forces represent force magnitudes, and the MAEs are calculated by averaging the force prediction residual, which is defined as the magnitude of difference of
force vectors by ML models and DFT. (c) Force prediction residuals vs prediction uncertainties. A prediction uncertainty is the atomic uncertainty, as defined in Eq. (1).
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would not have the true forces from the full structure to compare to,
but as we noted earlier, we have calculated the full Pt260 structure,
and thus, we also compare the ML forces and the true forces in Fig.
S6. Against the true forces, the MAE is 0.118 eV/Å; thus, the true fit
is close to the chunk-wise and best possible fit. In Fig. 3(c), we show
a “runeplot” comparing the prediction uncertainties to the actual
residuals. The structure uncertainty of 0.26 eV/Å gives a reasonable
upper bound for the force-prediction residuals, the maximum value
of which is 0.21 eV/Å for all atomic chunks.

C. Structure optimization
With the NFT model trained to the initial Pt260 structure,

we undertook a structural optimization. The relative energy vs
relaxation step is shown as the “initial” curve of Fig. 4(a), which
upon initial examination appears to show a well-behaved struc-
tural relaxation. The model’s uncertainty estimate is shown in
Fig. 4(b); here, we are alerted that, after a few relaxation steps, the
model loses confidence in the predictions. The large deviation is
attributed to uncertain new local environments encountered during
relaxation.

To improve the ensemble model, we further selected a small
number of uncertain atomic chunks from the relaxation trajectory
using the CUR algorithm, which has been used for fingerprint and
image selections in previous ML potential studies.17,38,43,44 The CUR
algorithm was used because it allows structure selection without
knowing the structure properties such as forces. Ten atomic chunks
were selected because the feature matrix of all uncertain atomic

FIG. 4. Structure optimization of the Pt260 nanoparticle by the ensemble models
and DFT. (a) Relative energy vs relaxation step. (b) Uncertainty propagation dur-
ing relaxation. The solid shape represents the maximum atomic uncertainty (that
is, the structure uncertainty), whereas the hollow shape represents the average
atomic uncertainty.

chunks can be largely represented by the reduced feature matrix
of the selected chunks. These 10 chunks were added to the previ-
ous training set (comprised of 20 bulk structures and 204 chunks
selected from the initial structure of Pt260), and the ensemble was re-
trained with nearsighted force training on the initial structure. The
model was retrained three times until the maximum structure uncer-
tainty on the entire relaxation trajectory has not been improved
for two consecutive retraining iterations, which shows a maximum
structure uncertainty of 0.28 eV/Å. In total, 54 new chunks were
added into the fitting database. The best retrained model is as good
as the initial model in terms of fitting the DFT local and true forces
of the initial Pt260, as shown in Fig. S6. Full details of the retraining
algorithm can be found in Secs. III and IV B of the supplementary
material.

With the re-trained ensemble, we again undertook a structural
relaxation, whose trajectory and predicted uncertainty are shown in
Figs. 4(a) and 4(b). With the extra training data, we now see that
the predicted uncertainty stays approximately constant throughout
the trajectory, indicating a much higher confidence in these results.
To validate the relaxation, we also undertook the full relaxation
in DFT; these results are shown in Fig. 4(a) as well, and we see
that there is a good match between the energetic pathway between
the re-trained model and the true DFT relaxation. We also cal-
culated the ML-predicted relaxed structure by DFT, and found a
mean and maximum force of 0.14 and 0.38 eV/Å, which is certainly
not as relaxed as that would be found by a pure-DFT calculation,
but is within the range of the uncertainty estimate. As a cross val-
idation, we calculated the DFT relaxed structure by the retrained
model and found a MAE and maximum deviation of 0.13 and
0.33 eV/Å, which are on par with what we expect from the
nearsighted analysis.

Note that both the initial and retrained models have only seen
forces acting on central atoms of atomic chunks, rather than the
entire nanoparticle. Therefore, the NFT approach should be able to
do a decent job on larger systems consisting of tens of thousands
of atoms as the NFT approach only relies on fitting atomic chunks
comprising a limited number of atoms.

1. Transferability to larger systems
We further examined the retrained model on a larger rattled

cluster, Pt309. The relative energy change by the retrained ensem-
ble model matches well with the DFT result, see Fig. 5(a). This is
consistent with the uncertainty propagation during relaxation, see
Fig. 5(b). Although the first two structures of the ML-predicted
trajectory are located outside the well-trained region (with uncer-
tainties >0.40 eV/Å), after two steps, the structure relaxes to a
familiar region where the ML model can give more accurate force
predictions, as indicted by the lower uncertainties. We also com-
pared ML-predicted forces and DFT-evaluated true forces on the
initial structure and ML-predicted relaxed structure, which gave
MAEs of 0.13 and 0.13 eV/Å, respectively. These errors are on par
with the MAE of the retrained model on the initial structure of
Pt260, as shown in Fig. S6(b). We also extended this analysis to a
much larger nanoparticle, Pt1415, which is, to the best of our knowl-
edge, the largest platinum nanoparticle that has ever been studied
in a pure DFT calculation.45 Although the relative energy change
in Fig. 5(c) cannot be validated by a pure DFT calculation, the
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FIG. 5. Structure optimization of Pt309 and Pt1415 nanoparticles with the retrained ensemble model. (a) Relative energy vs relaxation step for Pt309. (b) Uncertainty propagation
during relaxation for Pt309. (c) Relative energy vs relaxation step for Pt1415. (d) Uncertainty propagation during relaxation for Pt1415.

structure uncertainty shown in Fig. 5(d) falls into the high confi-
dence region after two relaxation steps, which suggests that the ML
relaxed Pt1415 should be close to the one predicted by a pure DFT
calculation.

This simple analysis indicates that the re-trained ensemble
model exhibited transferability to a larger system. Obviously, if this
were not the case, we could just repeat the process of identifying
uncertain atoms and re-training the model on these newly extracted
chunks, identically as we did for the smaller particle.

2. Computational time, scalability, and parallelizability
The algorithm described here is expected to scale linearly with

the system size (since the extracted chunks are of a constant size)
vs the inherent cubic scaling of methods such as DFT—or the even
higher scaling of more accurate electronic structure calculations.
Here, we make a comparison of the number of DFT hours expended
by each of the major tasks.

The relaxation of Pt206 in DFT took us about 8807 cpu-h,
whereas the DFT relaxation of Pt309 took about 28 680 cpu-h. In
contrast, the DFT calculations to create the training data for the
ML method took about 7224 cpu-h and it took about 400 cpu-
h for the NFT training. This represents a modest savings for the
Pt260 system and a fairly dramatic savings for the larger Pt309 sys-
tem. We would expect this savings to increase dramatically for
larger systems, exploiting the linear scaling of the NFT method
vs the cubic (or higher) scaling of typical electronic-structure
methods.

The method described here offers major advantages in par-
allelizability. Whereas the large-scale DFT calculations can ben-
efit from parallelization, DFT calculations can be difficult to

parallelize46 and require all cores to be simultaneously available, cre-
ating difficulties for batching systems and possible reliability issues.
In contrast, the many small DFT jobs created by the NFT algorithm
are embarrassingly parallel (or “proudly parallel”); that is, they can
be submitted individually to a queuing system and do not require
all cores to be available simultaneously. For instance, it requires
120 cpu cores and 8 h to perform a single-point DFT calculation
for Pt260. In comparison, 16–48 cpu cores are sufficient for DFT
calculations for atomic chunks. For example, it only takes 24 cores
and 11 min for a single-point calculation of an atomic chunk with
46 atoms.

VI. DISCUSSION AND CONCLUSION
The accuracy of most atomistic ML calculators is fundamen-

tally limited by the locality assumption: most approaches employ
a cutoff radius and only examine atoms within this radius when
calculating per-atom quantities such as forces and energies. This
assumption relies on the “nearsightedness” of electronic structure
calculations; when we systematically examined the nearsightedness
of the Pt260 structure by pulling out “chunks” of varius radius and
calculating in DFT, we found that at typical machine-learning cut-
offs of 6–7 Å, the mean error in atomic forces was still around
∼0.3 eV/Å, suggesting an upper-bound for the ability of atom-
istic ML calculators in replicating the true DFT forces. When we
increase this to 8 Å, we find the discrepancy to drop to about 0.1
eV/Å, which we took to be a decent trade-off between precision and
computational speed.

Here, we exploit this limitation to systematically produce
training data for large structures, based only on small structures
that replicate the surrounding environment of the most uncertain
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atoms in the structure. As a result, we see that the deviation of
the ML-predicted forces from the true DFT forces is ∼0.12 eV/Å
about that expected by the inherent limitation of the cutoff radius
employed.

The nearsightedness analysis we performed here is by design
pessimistic and meant to test the extreme case; that is, metal atoms
outside the cutoff radius were replaced with vacuum. This was done
both for the nearsighted analysis and the subsequent NFT sam-
pling algorithm. In practice, one could make intelligent choices
based on the system being simulated; for example, in this case, one
might electrostatically embed the extracted cluster to simulate metal
surroundings.32,40 In cases involving covalent or insulator systems,
for example, one might passivate dangling bonds or add a buffer
layer to alleviate the issue of undesirable long-range interactions.32

In a large-scale slab calculation, one would likely want to make
the chunks extracted be periodic. This would presumably lower the
uncertainty of both the nearsighted analysis and the resulting ML
model fit to the extracted chunks.

The NFT method is expected to scale with O(N) at worst,
where N is the number of atoms in the system [as compared to
O(N3

) scaling for methods such as DFT]. Because of the similar-
ity between regions of a large structure and the strategy we have
employed for focusing on the most uncertain atoms, in practice,
the scaling may actually be somewhat less than first-order. However,
we should note that machine-learning is not necessary to make a
similar algorithm with O(N) scaling: for example, one could start
with an N-atom structure and create N “chunks” of radius Rc, which
are run in DFT, then use the central-atom forces from each of the
chunks to take an ionic step. This would take N calculations per ionic
step regardless of the system size, resulting in an O(N)-method
with approximately the same accuracy as that presented here. The
machine-learning NFT method still saves considerable computa-
tional effort compared to such a divide-and-conquer approach. For
our Pt260 example, we needed 204 DFT-calculated atomic chunks to
train the initial structure, which is similar to the 260 chunks needed
in a divide-and-conquer strategy. However, when we undertook
the structural relaxation, we added only a total of 54 more DFT-
calculated chunks, whereas a divide and conquer would require
260 × 25 = 6500 DFT-calculated chunks for this 25-step relaxation.
The savings are even greater for the larger structures, where the NFT
method did not require any additional training data, but the divide
and conquer approach would have requested 309 × 33 = 10 197 and
1415 × 50 = 70 750 calculations for the Pt309 and Pt1415 calculations,
respectively, compared to only 258 DFT calculations for the ML
approach.

The NFT approach can be easily adapted for other ML mod-
els, if a certain atomic property, such as forces, is an output of
the model. Although forces are chosen as the atomic property in
the current work, this framework is not limited to this specific
atomic property. It should be suitable for other properties such
as charges, as long as the atomic property can be (largely) deter-
mined via the local environments. Prior work by Bianchini et al.
found a local character in various metal systems for other atomic
properties, such as charges and magnetization.41 Since it trains on
atomic chunks only, the NFT approach exploits the locality of the
atomic property; therefore, it may be problematic for cases where
strong long-range interactions cannot be ignored, for example, in
many electrochemical scenarios including water.47 Nevertheless, if

the long-range interactions, for example, electrostatic interactions,
can be decoupled from the short-range interactions, as implemented
in the third-generation high-dimensional neural network poten-
tials,48 the NFT approach can still take advantage of the atomic
properties and improve the model by addressing uncertain local
environments.

Training on simple atomic chunks representing local chemical
environments, we have demonstrated that the NFT approach offers
a general and robust approach for fitting PESs, making an important
step toward applications of ML potentials in molecular simulations.
Although a structure optimization is used as an example in this
study, this approach can also be employed in other applications, such
as reactivity studies on larger nanoparticles and global optimization
of large nanoparticles.

SUPPLEMENTARY MATERIAL

The supplementary material includes the derivation of atomic
force cutoff in finite-range ML potentials (Sec. I), machine learning
models (Sec. II), the retraining procedure for structure optimiza-
tion (Sec. III), the image and feature selection algorithms (Sec. IV),
computational settings of DFT calculations (Sec. V), supplemental
results (Sec. VI), application with a nearsighted parent calculator
of EMT (Sec. VII), and example scripts to replicate this work (Sec.
VIII).
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