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Random forest classifier for single phase formability, Fast sampling of configurations using the
embedded atom method (EAM), First-principles data for MTP, MTP-enabled simulations for cor-
rosion metrics, and Supporting results.

S-1 Standard enthalpy of formation of oxides
Table S1 summarized the enthalpy of formation of oxides at room temperature (298.15 K). Data are
found on NIST Chemistry WebBook. One should note that one mole of Cr2O3 and Al2O3 includes
two moles of Cr and Al. Therefore, a fair comparison between formation enthalpies of different
oxides needs to divide the formation enthalpy by the number of metal element.

S-2 Computational settings for DFT calculations
Grid-based projector-augmented wave code (GPAW) was used for all DFT calculations [1]. The
Generalized Gradient Approximation (GGA) exchange-correlation functional parameterized by

Table S1: Molar enthalpy of oxide formation for Al, Cr, Fe, Co and Ni. Data are excerpted from NIST
Chemistry Webbook.

Oxide ∆fH
0
solid [kJ/mol]

Al2O3 -1675.7
Cr2O3 -1134.70
FeO -272.04
CoO -237.74
NiO -239.7
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Perdew-Burke-Ernzerhof (PBE) was used with a plane wave cutoff of 350 eV [2]. Fermi-Dirac
smearing of 0.1 eV was employed for fast convergence, and the energetics were extrapolated to 0
K. All calculations were performed including spin polarization. To sample the Brillouin zone, the
number of k points for any dimension is set by a floor function b30/lc where l is the length of the
dimenstion. For surface structures, a dipole correction was applied in the direction normal to the
surface. Convergence of self-consistent field (SCF) calculations were achieved when the energy
difference between the last three steps is less than 0.0001 eV/electron.

S-3 Details of momentum tensor potentials
In spirit to finite-ranged machine learning potentials, momentum tensor potential (MTP) defines
the total energy E as the sum of contributions of local chemical environments (V (ni)). The atomic
local contribution V (ni) is expanded by a linear combination of basis functions. Each of the basis
function is a contraction of moment tensor descriptors to yield scalars. The moment comprises
of two components—one component is a radial function to control the finite-ranged two-body in-
teractions, and the other component is tensor of a certain rank encoding angular information of
the atomic environment. By definition, the as-built basis functions preserve the rotation, permu-
tation and reflection symmetries. The maximum level of contraction (levmax) allowed defines the
functional form of MTP. For high-entropy alloy AlCrFeCoNi, we used levmax=20 with Chebyshev
polynomials as the radial basis functions. The minimum and cutoff distances of interactions were
set as 2 and 5 Å, respectively. For five-species materials with levmax=20, the total number of param-
eters to be fitted is 1293. For the breakdown of the number of parameters, readers should consult
the work by Novikov et al. [3].

S-4 Random forest classifier for single phase formability

Description of features
As mentioned, we built eight features on top of a given chemical composition. Those features con-
sist of atomic size difference (δ), mixing entropy (∆Smix), mixing enthalpy (∆Smix), Pauli elec-
tronegativity difference (∆χ), molar volume (Vm), bulk modulus (K), melting temperature (Tm),
and valence electron concentration (VEC). For the last four features, they are obtained by taking
the composition-weighted average of the corresponding atomic attributes. The mixing entropy is
defined as ∆Smix = −R

∑n
i=1 ci ln(ci), where R is the ideal gas constant and ci is the composition

of element i. The Pauli electronegativity difference is expressed as ∆χ =
√∑n

i ci(χi − χ), where
χi and χ are respective electronegativity of element i and the composition-weighted average of
electronegativity. The size difference is given by δ = 100×

√∑n
i ci(1−

ri
r

) where ri and r repre-
sent the size of atom i and the weighted average of atom sizes, respectively. The mixing enthalpy
reads as ∆Hmix = 4

∑n
i=1

∑n
j>iHijcicj , where the binary interaction term is calculated based on

the Miedema model [4].
The size, melting temperature, valence electron concentration and molar volume of each el-

ement are retrieved from the ‘mendeleev’ python package. The bulk modulus of each element is
excerpted from the plot on the website for periodic table using WebPlotDigitizer. For some missing
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Figure S1: Frequency of elements in the experimental dataset.
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Figure S2: Frequency of number of elements in the experimental data.

bulk modulus and electronegativity values, web values were used. The Midema model calculations
were carried out using ‘qmpy’ python package.

Exploratory data analysis
Figure S1 shows the frequency of elements found in the experimental data. It is clear that the most
commonly used five elements are Fe, Ni, Cr, Co and Al, and those noble metals such as Pt and Au
are barely used.

Figure S2 summarizes the number of elements for each alloy in the experimental dataset. Most
of the alloys are binary and most high-entropy alloys are with five or six elements.

Figure S3 shows the class-wise distribution of values for each feature. A glimpse of these
box plots indicate that there are no strong linear dependence of single phase formability with any
specific features, implying that non-linear models are needed to describe the complex interactions
between feature and output labels.

Model parameters
We built the random forest model using scikit-learn python package (https://scikit-learn.org/stable/).
We set the number of estimators (decision trees), max depth of each estimator, minimum samples
to be split as 100, 20 and 4, respectively. A ‘minmax’ scaler was utilized to scale feature values to
the range between -1 and 1 because all feature values are well bounded.
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Figure S3: Class-specific feature value distributions.

S-5 Fast sampling of configurations using EAM
To facilitate the process of generation of training structures, we first created bulk FCC structures
with a supercell of 3×3×3 (108 atoms) for Alx(CrFeCoNi)100−x with Al compositions being 0, 5,
10, 15 and 20%. The atoms in the supercell were randomly distributed. We performed relaxation
using LAMMPS to optimize the lattice geometry and atomic positions at the same time. For the
relaxation trajectory of each Al composition, we chose the structures at every 10th relaxation step
to be evaluated by first-principles calculations. In total, 150 bulk structures chosen from relaxation
were calculated. Starting with the relaxed structures, we performed NVT molecular dynamic (MD)
simulations using Langevin dynamics at a temperature of 1700 K, a friction coefficient of 0.002 and
time step of 5 fs. 5000 MD steps were carried out and 100 images for each Al composition were
saved, out of which 20 structures were further selected using a farthest point sampling algorithm.
20 structures were selected for each Al composition for the purpose of efficiency of first-principles
calculations as well as for preserving most statistical info held by the original 100 structures. Those
20 structures were reevaluated by First-principles calculations. Moreover, we performed Markov
chain Monte-Carlo (MCMC) simulations to sample more diverse structures. MC simulations were
performed with canonical ensemble at a temperature of 500 K. At each MC step, two neighboring
atoms with different types are exchanged and a new structure is created. We aimed to sample more
possible local minima using MCMC simulations. The new structure is accepted if the potential
energy drops; otherwise, it will be accepted with a Boltzmann probability if the potential energy
increases. Numbers of MC steps were chosen to ensure that on average at least 40 times of swap
were performed for each atom in the system. For each Al composition, 50 MC structures were
randomly selected for DFT evaluation. The MD and MC simulations were conducted with Atomic
Simulation Environment (ASE) [5] and using the ASE-MTP interface available at ASEMTP. For
FCC(111) surfaces, atomic structures with a supercell of 5× 5× 5 were created for each Al com-
position. The same procedure as the sampling for bulk structures was carried out to sample diverse
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Table S2: Breakdown of the training data.

Data type # training data # atoms
Bulk, relaxation 150 108

Bulk, MD 99 108
Bulk, MCMC 242 108
Bulk, simple 365 1–54

Surface, relaxation 234 125
Surface, MD 99 125

Surface, MCMC 242 125
Surface, simple 138 5, 16

Total 1569 NA

Table S3: Breakdown of ‘simple’ structures. SQS is short for special quasi-random structures.

Data type # training data # atoms
Bulk, simple, SQS 120 24, 25, 27

Bulk, simple, unary and binary 245 1, 2, 4, 27, 32, 54
Surface, simple, 1x1x5 surface cell 108 5
Surface, simple, 2x2x4 surface cell 30 16

surface structures.

S-6 First-principles data used to construct MTP
We carried out first-principles calculations to refine the properties (energy and forces) of the struc-
tures sampled using EAM. Together with the simple bulk structures and surface structures with
numbers of elements from one to five, in total 1569 first-principles data were curated. Numbers
of training data per simulation task were given in Table S2. Numbers of training data for ‘simple’
structures were listed in Table S3. Note that the number of structures shown in the table may be
different from that sent to DFT calculations because some of those calculations did not converge.
The relaxation, MD and MCMC structures have been elaborated in the above section. The simple
bulk structures include first-principles relaxation trajectories for ternary, quaternary and quinary
special quasi-random structures generated with alloy ATAT, and relaxation trajectories for simple
bulk structures with no more than two elements. The simple surface structures include five-atom
FCC111 5-layer 1×1 surfaces with one to five elements and 16-atom one-element FCC111 sur-
face structures. High-throughput DFT calculations were operated using methods developed in our
previous work [6].
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S-7 MTP-enabled simulations used to calculate corrosion met-
rics

To obtain the results shown in Figure 2, for each Al composition of Alx(CrFeCoNi)100−x, we create
FCC_A1 and L12 structures using a supercell of 5 × 5 × 5 (500 atoms), and B2 structures using
a supercell of 7 × 7 × 7. We then optimized those structures in ASE using a force stopping crite
rion of 0.05 eV/Å. As the number of atoms for FCC and BCC structures are different, we cannot
directly compare the total energies. Instead, we compare the cohesive energies as shown in Figure
2.

To obtain the values of PBRCr as shown in Figure 3(b), we created L12 structures with system-
atically varied Al and Cr compositions for AlxCry(FeCoNi)100−x−y using a composition interval of
5%. We performed the structure optimization to find the stable lattice cell and atomic positions.
We found linear dependences of lattice constants with both Al and Cr compositions. The fitted
coefficients for Al and Cr compositions are respectively 3.26672181e-03 and 6.81928982e-05, re-
spectively, suggesting a stronger dependence on Al compositions. Therefore, for any pair of Al and
Cr for AlxCry(FeCoNi)100−x−y, we can find the geometry, hence the volume of Cr element in the
alloys. The volume of Cr will be used to calculate PBRCr.

In order to calculate the surface energies as shown in Figure 3(c), the bulk systems involved
are the L12 structures used for PBRCr while for the surface structures, we created a 20 × 20 × 5
(2000 atoms) surface cell to ensure that the periodicity in the surface directions will not affect
the arrangement of atoms. We performed MCMC simulations with around 80000 MC steps and a
temperature of 500 K to identify stable structures. The surface energies were calculated by taking
the difference between energies of surface systems and bulk systems, following by a division over
the surface area.

S-8 Supporting results

Feature importance for random forest classifiers
With the random forest classier, we analyzed the importance of all features using shapley values.
The results are plotted in Figure S4. The most important two features are mixing entropy and
atomic size difference. The importance of mixing entropy is twofold and competitive. On one
hand, thermodynamically high entropy will encourage the system to be well mixed to reduce the
Gibbs free energy. On the other hand, mixing more elements tend to be more difficult because there
is larger chance attributes among some elements can be highly varied. The importance of atomic
size difference is in alignment with intuition that mixing elements with different sizes is more
challenging. Interestingly, the least important feature is valence electron concentration although
VEC can be good indicator of which type of single phase structures will be formed [7].
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Figure S4: Class-specific shapley feature importance for the trained random forest classifier. SP and MP
represent single phase and multiple phase, respectively.
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