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Supplementary Table 1: Benchmark on the fixed SDF data using revised metrics. Results of
PropMolFlow models trained on the previous original QM9 SDF data and the corrected data
‘rQM9_v0.sdf’. A comparison for the commonly used stability metrics and the revised metrics is also
provided. Mean and standard deviations are reported across all model checkpoints across different property
embedding methods, properties and epochs.

Model Atom Stable rev Atom Stable Mols Stable rev Mols Stable Closed-shell Ratio
Original data 99.7 ± 0.4 98.5 ± 0.4 95.9 ± 3.1 78.7 ± 4.3 91.1 ± 2.7

Corrected data 99.9 ± 0.0 99.7 ± 0.1 97.9 ± 0.7 95.2 ± 1.3 95.2 ± 1.3

1 QM9 SDF data issue

1.1 Results using corrected data and revised metrics
Supplementary Table 1 shows the effect of data correction and using the revised stability metrics.
It is clear that the previous metrics substantially inflate the actual molecule stability (95.9% versus
78.7%) for models trained on the original QM9 SDF data. Moreover, the data correction improves
the revised molecule stability from 78.7% and 95.2%, and the closed-shell ratios from 91.1% to
95.2%. The mean and standard deviations in this table were reported over all embedding methods,
property types and model checkpoints.

1.2 Data Correction Procedure
The data-correction procedure described below corresponds to the latest rQM9_v1 SDF file avail-
able on the Zenodo repository [1]. The results presented in this work were generated using an
earlier revision, rQM9_v0.sdf, which contained a larger number of unresolved molecules (935 ver-
sus 303 in rQM9_v1). As these additional corrections affect only a small fraction of the dataset, no
performance differences are expected.

The original QM9 data in xyz format provides each molecule’s SMILES and InChI strings
(before quantum-mechanical relaxation) alongside its relaxed Cartesian coordinates. DeepChem’s
corresponding QM9 SDF file uses these relaxed coordinates, and, in addition, specifies explicit
bond orders and atomic formal charges. Although all QM9 molecules are expected to be charge-
neutral, numerous entries in the SDF exhibit nonzero net charges; even among those with zero
net charge, many contain incorrect bond orders. Furthermore, a subset of molecules fails RDKit
sanitization. Structural relaxation can also alter bond connectivity or stereochemistry, resulting
in changes to the SMILES or InChI representations. Such geometry-induced SMILES changes
were noted in the original QM9 publication [2] by comparing the input SMILES to those generated
through OpenBabel program for relaxed geometries [3]. In total, 3054 molecules display this
SMILES change, and previous generative models often exclude them entirely. Supplementary
Table 2 lists the counts for each type of issue aforementioned.
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Supplementary Table 2: Count of problematic molecules in the original QM9 SDF data. Except for
the first two columns, there may be overlapping molecules in each category.

Non-zero net charges
Invalid bond orders

with zero net charges RDKit not sanitizable Unmatched SMILES/InChI
25173 5174 1915 3054

Of the 3054 molecules whose SMILES no longer match after relaxation, 226 molecules form
multiple fragments and must be discarded. However, a SMILES change alone does not imply
an invalid structure. In our data-fix procedure, we retain any molecule whose relaxed geometry
remains a single connected structure, and whose bond orders and formal charges can be assigned
so that it is charge-neutral, passes RDKit sanitization, and satisfies valency-charge consistency,
even if its SMILES has been altered by relaxation.

We used a cross-check workflow (Supplementary Figure 1) to assign bond orders and charges
to each molecule. Starting from the DeepChem SDF, we take the following sequential steps; that
is, the next step only addresses the remaining molecules from the previous step:

1. We zero all formal charges and rebuild bonds. Since non-zero charges were the most frequent
issue, we first reset every atomic formal charge to zero and re-generated the bond connectivity
with RDKit.

2. We keep the bond order from the original SDF. We adjust formal charges until each atom’s
valence matches its formal charge.

3. There are many remaining cases where C-N single bonds should be C=N or extraneous C-C
bonds violate C(4) valency. Two such examples are provided in Supplementary Figure 1.
These can be fixed by bond replacement and/or removal.

4. Finally, we transferred bond orders using the bond connectivity in the input InChI strings.
This left just 28 unresolved molecules, which either fragmented after relaxation or for which
no charge-neutral, valency-consistent assignment was possible (see three representative fail-
ures in Supplementary Figure 2).

zeroize atomic 
formal charges

Original QM9 
SDF file

Add new bond 
orders from RDKit 

7362

Fix carbon and
nitrogen bonds

Tranfer bond orders 
from InChI strings

Assign atomic 
formal charges 

2312 557 28

C-N issue C-C issue

Supplementary Figure 1: Flow chart to fix the bond and charge issues in the original QM9 SDF file.
Two example configurations with C-N and C-C bond issues are provided along with the flowchart.
Numbers below each step are the remaining molecules that are not fixed. C, N, O, and H are in gray, blue,
red and white colors, respectively.
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Supplementary Figure 2: Three examples of unresolved molecules. C, N, O, and H are in gray, blue,
red and white colors, respectively. The three example molecules are among the 28 remaining molecules
that are problematic and cannot be fixed with the data correction pipeline used in this work.

The bond and charge assignment procedure is given in the flowchart (Supplementary Figure
1. Since the major issue from Supplementary Table 2 is the non-zero charges, in the first step, we
zeroize the atomic formal charges and add bonds using RDKit. For the remaining ones, we simply
use the same bond orders in the original SDF file and only adjust the atomic formal charges to obtain
structures with valid valency–charge configurations. Next, there are many molecules, where C-N
single bonds should be replaced with double bonds and/or C-C single bonds should be removed
to have the correct valency for N (3) and C (4). Two examples of the C-N and C-C bond issues
are provided in Supplementary Figure 1, and the bond with issue is marked with a green dashed
ellipse. Lastly, with bond transfer using input InChI strings, only 28 molecules remain. To ensure
the success of bond transfers, we found that it is important to turn on the ‘clearAromaticFlags’
for ‘Kekulization’ of the RDKit molecule generated from the InChI string. Three examples of
the unresolved cases are provided in Supplementary Figure 2, where either molecules break apart
with relaxation or there is no way to ensure charge neutrality and valency validity with the relaxed
structures.

Next, we compare the post-adjustment InChI strings (with stereochemistry removed) against the
original InChIs from the XYZ files, since omitting stereochemical layers preserves bond orders and
formal charges. Excluding stereochemistry, only 945 molecules remain unmatched. Of these, 696
molecules lie among the original 3054 “should-not-match” cases, reflecting connectivity changes
on relaxation.

The remaining 249 molecules fall outside that set; 51 of them fail RDKit sanitization and are
discarded. For the other 198, both the original and adjusted InChIs are valid. We compute each
variant’s MMFF94 potential energy in RDKit to decide which bonding is more plausible. Eighty
adjusted-bond molecules exhibit energies no greater than their originals, so we keep their new
bond/charge assignments; three molecules cannot be parameterized by MMFF94 and we used the
assignments. The final 116 molecules adopt the bond orders transferred from the original InChI
strings, and this completes our bond- and charge-correction pipeline for the QM9 SDF, which is
available at [1].

The differences between ‘rQM9_v0’ and ‘rQM9_v1’ SDF files come from the step 3 and 4. For
the earlier version, we did not consider molecules which have both N- and C-bond issues in step
3, and we did not clear aromatic flags in the molecules in step 4. This would lead to a smaller, but
still valid dataset for training PropMolFlow models and GVP predictors after data precessing.
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2 Systematic comparison of property embedding methods

2.1 Summary of top-performing methods
For α and Cv, the lowest MAEs in both OOD and ID tasks are achieved with the ‘Sum’ operation
without Gaussian expansion. In contrast, for µ, the best performance is obtained using ‘Multiply’
and ‘Sum’ for respective OOD and ID tasks. For molecular orbital-related properties such as ∆ε,
εHOMO and εLUMO, the best performance is typically achieved with a concatenation-based operation.

Supplementary Table 3: Optimal property embedding methods by task and property. The best
methods are identified by comparing the MAEs in corresponding tasks using a GVP property predictor.

ID Tasks OOD Tasks
Property Embedding method Gaussian expansion Embedding method Gaussian expansion

α Sum No Sum No
∆ε Concatenate No Concatenate_Sum No

εHOMO Concatenate_Sum No Concatenate No
εLUMO Concatenate_Multiply No Concatenate_Sum No
µ Sum No Multiply No
Cv Sum No Sum No

To compare the overall effect of different embedding methods, ranges of MAEs across all saved
checkpoint models are listed in Supplementary Table 4.

Supplementary Table 4: Lowest and highest MAEs for each property by varying the property
embedding methods and saved model checkpoints in the ID tasks. The MAEs are calculated by
comparing the GVP-predicted values to the input target values.

Property α ∆ε εHOMO εLUMO µ Cv

Unit Bohr3 meV meV meV Debye cal/(mol · K)
Minimum MAE 1.31 391 254 315 0.620 0.626
Maximum MAE 1.77 551 324 437 0.836 0.847

2.2 Relative MAEs
To further assess the impact of different property embedding strategies and the use of Gaussian
expansion, we analyze statistics of relative MAE differences for all models. This relative MAE
difference is the difference between the MAE for a specific model on a given property and the min-
imum MAE for that property. Comparing the histograms in Supplementary Figure 3, it is confirmed
from these results that Gaussian expansion should not be included for top-performing models in the
OOD and ID tasks, even though given the same property type and property-embedding operation,
Gaussian expansion leads to a lower MAE for 8 out of 30 cases for ID tasks and 12 out of 30 cases
for OOD tasks.

This difference may be attributed to how input properties interact with the node scalar features.
Without Gaussian expansion, the model freely explores the latent space, and the learned correla-
tions between structure and molecular properties are more influenced by the natural distribution
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of the QM9 data. While Gaussian expansion is demonstrated to be effective for autoregressive
models [4], it uses rigid functional forms that may distort the structure and property relationship
towards undesirable directions, which leads to a slightly inferior performance compared to results
without Gaussian expansion.

Regarding the property embedding methods themselves, results are summarized in separate his-
tograms in Supplementary Figure 4 and in Figure 5. With a cutoff of 10% and 5% for respective
OOD and ID tasks, the “Sum” operation appears more frequently, followed by Concatenate and
Concatenate_Multiply for the OOD tasks, while Concatenate_Multiply and Sum operations per-
form better in the ID tasks. Based on these findings, we recommend that, in the absence of prior
knowledge, Sum or Concatenate_Sum property embedding without Gaussian expansion is likely to
yield favorable results for property-guided generation.

ID tasks OOD tasks

Supplementary Figure 3: Histogram of relative MAE differences from the minimum for each
property in the ID (left) and OOD (right) tasks. Results are for two groups: One with Gaussian
expansion and the other without Gaussian expansion.
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Supplementary Figure 4: Histogram of relative MAE differences from the minimum for each
property based on different property embedding methods in the ID tasks. The relative MAE difference
is the difference between the MAE for an embedding method on a given property and the minimum MAE
for that property, divided by the minimum MAE values. In this way, we can group the relative MAEs across
different property types. For each embedding method, results with the lowest 3 MAEs are included in this
comparison.
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Supplementary Figure 5: Histogram of relative MAE differences from the minimum for each
property based on different property embedding methods in the OOD tasks. The relative MAE
difference is the difference between the MAE for an embedding method on a given property and the
minimum MAE for that property, divided by the minimum MAE values. In this way, we can group the
relative MAEs across different property types. For each embedding method, results with the lowest 3
MAEs are included in this comparison.

3 Optimal transport alignment
Previous works have shown that aligning the prior and target samples via equivariant optimal trans-
port can improve the performance of flow matching by minimizing the cross-links of the conditional
probability paths [5]. For single molecule generation, optimal transport alignment can be realized
through computing the optimal permutation of node ordering and rigid body alignment of atomic
positions [6, 7]. FlowMol applies the alignment to atomic positions for the training process. Addi-
tionally, this alignment ensures that the atomic positions exist in the center-of-mass free space, as
proposed by Hoogeboom et al. [8], which guarantees to give translation invariance.

4 Proofs of probability invariance for an equivariant generative
process

To be self-contained, we show in the following that an invariant prior probability distribution p0,
along with an equivariant transition probability path p(xt+∆t|xt), leads to an invariant marginal
probability p(xt+∆t). Klein et al. further proved that optimal transport preserves the symmetry of
both the probability state and the transport path [7].
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4.1 O(3) invariance of the prior distribution.
We can observe that p(x0) = N (0, I3) to be invariant for rotations and reflections, so p(x0) =
p(Rx0) where R ∈ R3×3 : RRT = I .

4.2 O(3) invariance of the marginal probability.
Suppose that we now have an equivariant transition probability path, which leads to p(Rxt|Rxp) =
p(xt|xp). If p(xt) is invariant and the transition probability path is equivariant for rotations and
reflections, using the proof by Xu et al. [9] and Hoogeboom et al. [8], we have:

p(Rxt+∆t) =

∫
xt

p (Rxt+∆t|xt) p(xt)dxt Probability chain rule

=

∫
xt

p
(
Rxt+∆t|RR−1xt

)
p(RR−1xt)dxt Multiply by RR−1 = I

=

∫
xt

p
(
xt+∆t|R−1xt

)
p(R−1xt)dxt Equivariance & Invariance

=

∫
xt

p (xt+∆t|u) p(u)| det (R)︸ ︷︷ ︸
=1

|du Change of variable u = R−1xt

= p(xt+∆t) Definition of marginal probability

Thus, the marginal probability p(xt+∆t) is also invariant to rotations.

5 SE(3) equivariant neural networks
As we know, chiral molecules are mirrored along a stereocenter, axis, or plane. Since molecule
properties can heavily rely on the chirality, SE(3) GVP neural networks, which are sensitive to re-
flection operations, were used. This is achieved by introducing cross-product operations of vectors
in the GVP updates (Algorithm 1 of Ref. [10]). The resulting SE(3) graph neural networks are
hence sensitive to reflections while preserving the rotational equivariance. By design, the atomic
coordinate updates are a combination of operations on relative position vectors and cross-products
of positive vectors. Using a proof similar to Schneuing et al. [11], we show below that an update in-
volving relative position vector is E(3) equivariant while an update involving vector cross products
is SE(3) equivariant. A combination of both operations is hence an SE(3)-equivariant process.

Suppose we have a rotation or reflection operation defined by an orthogonal matrix R ∈ R3×3

with RTR = I, and a translation vector t ∈ R3 Given the transformation of x̂i = Rxi + t and
x̂j = Rxj + t, the new relative position vector changes to:

x̂i − x̂j = R(xi − xj) (1)

Hence, operations involving the relative position vector are equivariant to rotation/reflection.
For a cross product of relative position vectors, we let the original vector product be (xi− x)×

(xj − x). The transformation using R and t changes the cross-product to:
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(x̂i − x̂)× (x̂j − x̂) =(Rxi −Rx)× (Rxj −Rx) Cancellation of translation
=(R(xi − x))× (R(xj − x)) Factoring out R
= det (R)R ((xi − x)× (xj − x))) (Ra)× (Rb) = det (R)R(a× b)

As a result, the cross-product vector is equivariant to rotation where det (R) = 1 while the sym-
metry breaks for reflection operations where det (R) = −1.

6 Supplementary results

6.1 Numeric results for six structural validity metrics
All the numbers correspond to the results shown in Fig. 2.

Supplementary Table 5: Molecular generation results on QM9. All metrics use the percentage (%) as
the unit, and higher numbers indicate better performance. Mean and standard deviations of all metrics are
reported across six properties for sampling 10000 structures. PropMolFlow results are averaged across all
properties for the top-performing models shown in Supplementary Table 3. All results are based on our
sampling. Note that the PropMolFlow numbers are slightly different from those in Supplementary Table 1
because this one uses the top-forming models and the previous table uses all the models. Best results are in
bold.

Model
Atom
Stable

Mols
Stable

Mols
Valid

Valid &
Unique

PB-
valid

Closed-shell
Ratio

EEGSDE 98.1 ± 0.1 79.9 ± 0.7 90.3 ± 0.8 89.5 ± 0.8 87.1 ± 0.4 86.5 ± 0.8
GCDM 98.7 ± 0.1 85.7 ± 1.4 94.6 ± 0.5 93.6 ± 0.5 92.0 ± 0.5 90.7 ± 1.3

GeoLDM 98.4 ± 0.1 83.1± 1.4 91.7 ± 1.1 90.9 ± 1.0 89.4 ± 1.0 89.4 ± 1.0
EquiFM 93.4 ± 0.6 40.4 ± 4.0 78.3 ± 2.5 78.1 ± 2.5 64.8 ± 3.2 59.9 ± 2.0
JODO 99.2 ± 0.1 93.0 ± 0.8 96.2 ± 0.5 94.3 ± 0.5 94.9 ± 0.5 98.4 ± 0.5

PropMolFlow 99.7 ± 0.1 95.2 ± 1.0 97.8 ± 0.8 95.5 ± 1.1 96.5 ± 1.1 94.8 ± 1.2

When evaluating metrics on a per-property basis, PropMolFlow consistently achieves the high-
est molecular stability and validity across all properties (Supplementary Tables 6-10). Across prop-
erties, PropMolFlow’s metrics follow the order: µ ≈ ∆ε > εHOMO > εLUMO > α > Cv. This trend
generally holds for the baseline models as well, with the exception of EEGSDE, suggesting a more
complex structure–property relationship for α and Cv. This complexity may be due to their strong
dependence on molecular geometry and the limitation of the training data, which includes only
fully relaxed molecules. Across metrics, molecular stability and “Validity & Uniqueness” exhibit
over 2% variations across properties, whereas molecular validity and PoseBusters validity vary by
less than 1%. Besides, all methods in this study generate a non-negligible fraction of open-shell
molecules: on average 1.6% for JODO and at least 4% for the other methods. This highlights a
previously overlooked issue in generative molecular modeling: the inability to consistently respect
the valence electron constraints inherent to the training data. Addressing this limitation is essential
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for improving the chemical validity of generated molecules especially when atomic formal charges
are considered in molecular graphs, and future work should improve upon this direction—perhaps
by explicitly including closed-shell constraints, as we do here by adding bond orders into molecular
graphs—to ensure better alignment with the reference distribution.

6.1.1 Per-property structural validity results for PropMolFlow

Supplementary Table 6: Per-property molecular generation results on QM9 for PropMolFlow.
Results are reported using the top-performing model for each property and evaluated using the revised
stability metrics.

PropMolFlow
Atom
Stable

Mols
Stable

Mols
Valid

Valid &
Unique

PB-
valid

Closed-shell
Ratio

α 99.6 93.6 96.5 94.7 92.9 94.7
∆ε 99.7 94.9 97.8 95.9 94.8 96.4

εHOMO 99.8 96.6 97.7 94.2 96.3 96.8
εLUMO 99.8 96.0 98.9 96.8 95.7 97.8
µ 99.7 95.4 97.5 95.0 95.1 96.1
Cv 99.7 95.0 98.4 96.7 93.8 97.3

6.1.2 Per-property structural validity results for EEGSDE

Supplementary Table 7: Per-property molecular generation results on QM9 for EEGSDE models.
Results are based on our own sampled molecules using publicly available generative models and evaluated
using the revised stability metrics.

EEGSDE
Atom
Stable

Mols
Stable

Mols
Valid

Valid &
Unique

PB-
valid

Closed-shell
Ratio

α 98.1 79.6 88.5 88.0 86.3 86.7
∆ε 98.1 79.8 90.5 89.6 87.2 87.0

εHOMO 98.1 78.7 91.2 90.4 87.2 84.7
εLUMO 98.2 80.9 90.7 90.0 87.7 87.2
µ 98.1 79.7 90.5 89.7 86.8 86.4
Cv 98.2 80.5 90.1 89.3 87.2 87.1
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6.1.3 Per-property structural validity results for GCDM

Supplementary Table 8: Per-property molecular generation results on QM9 for GCDM models.
Results are based on our own sampled molecules using publicly available generative models and evaluated
using the revised stability metrics.

GCDM
Atom
Stable

Mols
Stable

Mols
Valid

Valid &
Unique

PB-
valid

Closed-shell
Ratio

α 98.6 85.0 94.4 93.7 91.6 89.9
∆ε 98.7 86.0 94.7 93.9 92.0 90.9

εHOMO 98.9 88.3 95.4 94.3 92.9 93.1
εLUMO 98.7 84.7 94.4 93.5 92.0 89.4
µ 98.7 86.3 94.9 93.7 92.4 91.5
Cv 98.7 85.1 94.4 93.7 91.4 89.9

6.1.4 Per-property structural validity results for GeoLDM

Supplementary Table 9: Per-property molecular generation results on QM9 for GeoLDM models.
Results are based on our own sampled molecules using the checkpoint models bundled with the GCDM
work [12] and evaluated using the revised stability metrics.

GeoLDM
Atom
Stable

Mols
Stable

Mols
Valid

Valid &
Unique

PB-
valid

Closed-shell
Ratio

α 98.2 81.4 91.6 90.8 89.1 87.9
∆ε 98.3 83.1 91.8 90.9 89.2 89.9

εHOMO 98.4 84.0 92.2 91.5 90.3 90.4
εLUMO 98.4 84.0 92.2 91.4 89.9 89.3
µ 98.6 85.5 93.0 92.2 90.3 90.8
Cv 98.2 81.3 89.6 88.8 87.3 88.3

6.1.5 Per-property structural validity results for JODO

Supplementary Table 10: Per-property molecular generation results on QM9 for JODO models.
Results are based on our own sampled molecules using publicly available generative models and evaluated
using the revised stability metrics.

JODO
Atom
Stable

Mols
Stable

Mols
Valid

Valid &
Unique

PB-
valid

Closed-shell
Ratio

α 99.1 92.7 96.4 94.4 95.2 98.7
∆ε 99.3 94.1 97.0 95.1 95.7 99.0

εHOMO 99.2 93.5 95.9 94.0 94.7 98.5
εLUMO 99.1 92.5 95.6 93.9 94.5 98.2
µ 99.3 93.7 96.4 94.7 95.3 98.7
Cv 99.1 91.7 95.6 93.9 94.1 97.4
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6.1.6 Per-property structural validity results for EquiFM

Supplementary Table 11: Per-property molecular generation results on QM9 for EquiFM models.
Results are based on our own sampled molecules using models trained by us based on the hyperparameters
in Supplementary Section 8.2 and evaluated using the revised stability metrics.

EquiFM
Atom
Stable

Mols
Stable

Mols
Valid

Valid &
Unique

PB-
valid

Closed-shell
Ratio

α 93.2 39.2 76.9 76.8 65.4 58.1
∆ε 93.5 41.7 80.2 80.1 65.9 60.0

εHOMO 93.8 42.7 80.8 80.6 68.1 62.4
εLUMO 93.6 41.3 77.6 77.5 64.9 60.2
µ 92.2 32.4 73.7 73.6 58.0 56.5
Cv 94.1 45.0 80.4 80.2 66.6 61.9

6.2 Maximum Tanimoto similarity of generated molecules compared to train-
ing data in the ID tasks

Supplementary Figure 6 shows the maximum Tanimoto similarity of PropMolFlow-generated molecules
in the ID task with respect to the training set. Similarities were computed using the Jaccard index
on Morgan fingerprints, as implemented in RDKit [13].

Supplementary Figure 6: Pecentages of molecules with different maximum Tanimoto similarities
among generated and filtered molecules compared to training data in the ID tasks. Maximum
Tanimoto similarity of generated molecules after RDKit sanitization are evaluated using a Morgan
fingerprint with 2048 Bits [13]. Dashed lines indicate the cutoff of 0.8 to define novel rations.
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6.3 Evaluation of GVP property predictors
6.3.1 Performance of GVP property predictors for εHOMO, εLUMO and µ

Detailed comparison for εHOMO, εLUMO and µ are depicted in Supplementary Figure 7. For εHOMO

and εLUMO, the results are very similar to that of ∆ε. Results for µ are slightly different in that its
GVP versus Target MAE matches well with that of DFT. Also, µ shows a slightly higher structural
dependence of DFT property values than the other two orbital-base properties.

a

c 

b

Supplementary Figure 7: Performance of GVP property predictors without and with relaxation for
µ, εHOMO and εLUMO. a, Pairwise comparison between Target, DFT and GVP on raw molecules. b, GVP
versus DFT for both raw and DFT-relaxed molecules. c, Structure variation and property dependence on the
DFT relaxation.

6.3.2 Pairwise MAEs between DFT, GVP and Target

Pairwise MAEs between Target, DFT and GVP are shown in Supplementary Figure 8 for six prop-
erties without and with relaxation. Results evaluated on DFT-relaxed molecules are indicated by
‘-Relax’.
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Supplementary Figure 8: Pairwise MAEs between DFT, GVP and Target with and without
relaxation. Each heatmap corresponds to one specific molecule property: a, Isotropic polarizability (α); b,
HOMO-LUMO energy gap (∆ε); c, HOMO energy (εHOMO); d, LUMO energy (εLUMO); e, Dipole
moment (µ); f, Room-temperature heat capacity (Cv). ‘target’ represents the input property values used to
generate molecules using PropMolFlow models. ‘-Relax‘ indicates that the evaluation is performed on the
DFT relaxed structures.

6.4 Interpolation results from the PropMolFlow models
6.4.1 Numeric results for interpolation study

Supplementary Table 12 shows the input target property values, the DFT-computed values and the
GVP predictions corresponding to the molecule configurations in Fig. 4.
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Supplementary Table 12: Input target property values, DFT-computed values and GVP predictions
for the interpolation study. α, ∆ε, εHOMO, εLUMO, µ, and Cv use Bohr3, eV, eV, eV, Debye, and cal/(mol
· K) as the respective units.

Type, Property # 1 # 2 # 3 # 4 # 5 # 6 # 7 # 8
Target, α 63.8 68.4 72.9 77.5 82.0 86.6 91.1 95.7
DFT, α 63.9 68.4 72.9 77.3 81.9 86.6 90.6 95.6
GVP, α 64.8 69.7 74.1 78.7 84.1 88.5 92.6 95.7

Target, ∆ε 5.03 5.77 6.47 7.17 7.92 8.63 9.33 10.1
DFT, ∆ε 5.14 5.72 6.53 7.17 8.02 8.66 9.30 10.0
GVP, ∆ε 5.25 5.90 6.53 7.24 8.11 8.90 9.09 10.1

Target, εHOMO -7.37 -7.02 -6.69 -6.36 -6.04 -5.69 -5.36 -5.03
DFT, εHOMO -7.35 -7.02 -6.69 -6.34 -6.12 -5.71 -5.55 -5.03
GVP, εHOMO -7.35 -6.89 -6.66 -6.36 -6.23 -5.55 -5.60 -4.85

Target, εLUMO -2.88 -2.18 -1.47 -0.76 -0.05 0.65 1.36 2.07
DFT, εLUMO -2.86 -2.10 -1.39 -0.79 -0.19 0.65 1.39 2.10
GVP, εLUMO -2.69 -2.18 -1.47 -0.87 -0.14 0.82 1.52 2.04

Target, µ 0.580 1.43 2.28 3.13 3.98 4.83 5.68 6.53
DFT, µ 0.675 1.37 2.19 3.14 3.95 4.85 5.40 6.69
GVP, µ 0.578 1.31 2.29 3.21 4.08 4.92 5.06 6.69

Target, Cv 23.7 26.0 28.2 30.5 32.7 35.0 37.2 39.5
DFT, Cv 24.1 26.1 28.1 30.5 32.7 35.3 37.4 36.9
GVP, Cv 23.9 27.5 28.3 30.2 33.1 35.7 37.4 38.3

6.4.2 Comparing two isomers

Supplementary Figure 9 shows the comparison between the PropMolFlow-generated molecule con-
ditioned on εHOMO versus the most stable tautomer identified by RDKit and MMFF empirical en-
ergy calculator.

Generated by PropMolFlow Potential most stable tautomer 

MMFF energy: 6.3 kcal/molMMFF energy: 19.6 kcal/mol

C=C1C=C(N)C=C(C)N1Cc1cc(=N)cc(C)[nH]1

Supplementary Figure 9: PropMolFlow-generated molecule versus the most stable counterpart
identified by RDKit with Merck Molecular Force Fields (MMFF) potential energies. The 2D
molecular graph, SMILES and the MMFF-calculated potential energies are compared. RDKit
‘TautomerEnumerator’ was used to find potential tautomers.

Page S17



Supporting Information

a

b

-4.57 2.37 7.4 8.1 7.92.45 2.18-5.09 -4.95
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Supplementary Figure 10: Performance of PropMolFlow in OOD generation for εHOMO, εLUMO and
µ. a, Distribution of DFT calculated and GVP predicted values for PropMolFlow generated molecules, and
the property distribution of QM9 is also included. The vertical black dashed line in histograms represents
the target property value q0.99. Curves on top of histograms are fitted with a kernel density estimation. b,
Three example molecules that do not exist in QM9 but are found in a larger PubChem dataset are included
in the left panel. Numbers below the configurations are DFT calculated property values on raw molecules
generated by PropMolFlow models. C, H, O, N, and F are in gray, white, red, blue, and yellow colors,
respectively. Property values for εHOMO, εLUMO, and µ are in units of eV, eV and Debye, respectively. c,
Maximum Tanimoto similarity of generated molecules compared to the training data using a Morgan
fingerprint with 2048 Bits [13].

6.5 Toward OOD generation
6.5.1 Performance conditioned on εHOMO, εLUMO and µ

The OOD generation results for εHOMO, εLUMO and µ are shown in Supplementary Figure 10.

6.5.2 Additional extrapolation experiments

In Fig. 5, we observed an offset for the center of distribution against the target. As a comparison,
we also sampled the same number of molecules using the median values of QM9 training data
(q0.5), which are closer to the center of the distribution. As shown in Supplementary Figure 11,
the distribution of GVP-predicted property values for generated molecules are typically narrower
than those obtained with a more extreme target property value (q0.99), when the training data are
approximately normal, such as for α, µ, Cv, and εHOMO. In contrast, for properties with broader
training data distributions, such as ∆ε and εLUMO, the q0.5 case produces broader GVP distributions.
This suggests that the quality of generation is strongly influenced by the underlying distribution of
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Supplementary Figure 11: Comparison of GVP-predicted values for molecules conditioned on
median values (q0.5) and the 99th quantile (q0.99) respectively. Results for three example properties are
shown, including α, Cv and εLUMO.
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Supplementary Figure 12: Numbers of valid molecules when conditioning on different property
values, including q0.5, µ+ 3σ and q0.99. Results for three example properties are shown, including α, Cv

and ∆ε. Note that the µ in this figure corresponds to the mean value of QM9 training data, not the property
dipole moment.

the training data.
To further evaluate the model’s extrapolation capability, we examined molecule generation at

extreme atom counts and property values. While the model can still produce valid molecules, the
fraction of valid outputs decreases as property values (Supplementary Figure 12) and atom counts
(Supplementary Figure 13) move further beyond the training regime, highlighting a fundamental
limitation imposed by the available training data.

The specific property values for each bar in Supplementary Figure 12 are shown in Supple-
mentary Table 13. Supplementary Figure 13 shows the total number of valid molecules when
conditioning on ten different property values for ten sweeps (100 molecules in total), and note that
the maximum atom count in QM9 is 29.

Supplementary Table 13: Three selected values for each property. The ‘µ’ here represents the mean of
training data property values rather than the dipole moment elsewhere.

Statistic ∆εHOMO (eV) ∆εLUMO (eV) ∆ε (eV) µ (D) α (bohr3) Cv (cal·mol−1·K−1)
q0.5 (median) -6.560 0.327 6.800 2.500 75.60 31.600
q0.99 (99th pct.) -4.781 2.476 9.350 6.742 93.31 41.208
µ + 3 σ -4.626 4.082 10.612 7.300 100.00 44.000
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Supplementary Figure 13: Numbers of valid molecules when conditioning on atom counts beyond the
training data. A few examples configurations are provided in the inset. C, H, and O are in grey, white and
red color, respectively. Lines are included to guide the eye.

7 Analytics for the curated DFT dataset

7.1 Number of configurations in the curated DFT data
Supplementary Table 14 shows that we normally have more remaining configurations after filtering
for the ID tasks compared to the OOD tasks, except for ∆ε. We find HOMO, LUMO and dipole
moment based PropMolFlow models generate more valid structures compared to polarizability and
heat capacity, in agreement with structural validity results (Supplementary Table 6), except for ∆ε.

Supplementary Table 14: Number of remaining valid molecules after molecule filtering. Molecular
filtering steps with the criteria, including Molecule stability, RDKit validity, PoseBusters validity,
closed-shell validity, multi-fragment check, and DFT convergence.

Task Type α ∆ε εHOMO εLUMO µ Cv

ID Tasks 902 869 945 938 946 931
OOD Tasks 781 885 941 889 886 860
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7.2 Maximum atomic forces
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Supplementary Figure 14: Histograms of maximum atomic forces for PropMolFlow-generated
structures in the ID tasks (filled) and OOD tasks (unfilled). The molecules are directly generated raw
molecules after the multi-step filtering. Numbers of remaining molecules can be found in Supplementary
Table 14.

We summarize the maximum atomic forces for structures that survive the molecule filtering in Sup-
plementary Figure 14 for both OOD and ID tasks, respectively. Maximum atomic forces imply that
most structures should be regarded unrelaxed, where typical maximum atomic forces for relaxed
structures should be no larger than 0.05 eV/Å.

Comparing ID and OOD tasks, maximum atomic forces are overall larger for OOD-generated
structures versus those in the ID tasks.

8 Additional Details

8.1 QM9 molecular property definitions
• α (Polarizability): Tendency of a molecule to acquire an electric dipole moment when sub-

jected to an external electric field.

• ∆ε: The energy gap between HOMO and LUMO.

• εHOMO: Highest occupied molecule orbital energy.

• εLUMO: Lowest unoccupied molecule orbital energy.

• µ: Dipole moment, which measures the separation of positive and negative charges within a
molecule.
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• Cv: Heat capacity at room temperature 298.15 K.

8.2 Hyperparameters for training EquiFM conditional models
EquiFM models were trained using flow matching parameterized by an EGNN architecture with
9 layers and 192 hidden features, with a batch size of 64. A deterministic dequantization and a
vanilla variance-preserving (VP) probability path for discrete molecular modalities were employed.
The model was trained with 2500 epochs, and model inference used 210 time steps with an Euler
integration method.
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